亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The growing demand for ride-hailing services has led to an increasing need for accurate taxi demand prediction. Existing systems are limited to specific regions, lacking generalizability to unseen areas. This paper presents a novel taxi demand forecasting system that leverages a graph neural network to capture spatial dependencies and patterns in urban environments. Additionally, the proposed system employs a region-neutral approach, enabling it to train a model that can be applied to any region, including unseen regions. To achieve this, the framework incorporates the power of Variational Autoencoder to disentangle the input features into region-specific and region-neutral components. The region-neutral features facilitate cross-region taxi demand predictions, allowing the model to generalize well across different urban areas. Experimental results demonstrate the effectiveness of the proposed system in accurately forecasting taxi demand, even in previously unobserved regions, thus showcasing its potential for optimizing taxi services and improving transportation efficiency on a broader scale.

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · Extensibility · INFORMS · LIDAR · 真實值 ·
2023 年 12 月 14 日

As a fundamental task of vision-based perception, 3D occupancy prediction reconstructs 3D structures of surrounding environments. It provides detailed information for autonomous driving planning and navigation. However, most existing methods heavily rely on the LiDAR point clouds to generate occupancy ground truth, which is not available in the vision-based system. In this paper, we propose an OccNeRF method for self-supervised multi-camera occupancy prediction. Different from bounded 3D occupancy labels, we need to consider unbounded scenes with raw image supervision. To solve the issue, we parameterize the reconstructed occupancy fields and reorganize the sampling strategy. The neural rendering is adopted to convert occupancy fields to multi-camera depth maps, supervised by multi-frame photometric consistency. Moreover, for semantic occupancy prediction, we design several strategies to polish the prompts and filter the outputs of a pretrained open-vocabulary 2D segmentation model. Extensive experiments for both self-supervised depth estimation and semantic occupancy prediction tasks on nuScenes dataset demonstrate the effectiveness of our method.

Foundation models are trained on increasingly immense and opaque datasets. Even while these models are now key in AI system building, it can be difficult to answer the straightforward question: has the model already encountered a given example during training? We therefore propose a widespread adoption of Data Portraits: artifacts that record training data and allow for downstream inspection. First we outline the properties of such an artifact and discuss how existing solutions can be used to increase transparency. We then propose and implement a solution based on data sketching, stressing fast and space efficient querying. Using our tools, we document a popular language modeling corpus (The Pile) and a recently released code modeling dataset (The Stack). We show that our solution enables answering questions about test set leakage and model plagiarism. Our tool is lightweight and fast, costing only 3% of the dataset size in overhead. We release a live interface of our tools at //dataportraits.org/ and call on dataset and model creators to release Data Portraits as a complement to current documentation practices.

Efficiently capturing multi-scale information and building long-range dependencies among pixels are essential for medical image segmentation because of the various sizes and shapes of the lesion regions or organs. In this paper, we present Multi-scale Cross-axis Attention (MCA) to solve the above challenging issues based on the efficient axial attention. Instead of simply connecting axial attention along the horizontal and vertical directions sequentially, we propose to calculate dual cross attentions between two parallel axial attentions to capture global information better. To process the significant variations of lesion regions or organs in individual sizes and shapes, we also use multiple convolutions of strip-shape kernels with different kernel sizes in each axial attention path to improve the efficiency of the proposed MCA in encoding spatial information. We build the proposed MCA upon the MSCAN backbone, yielding our network, termed MCANet. Our MCANet with only 4M+ parameters performs even better than most previous works with heavy backbones (e.g., Swin Transformer) on four challenging tasks, including skin lesion segmentation, nuclei segmentation, abdominal multi-organ segmentation, and polyp segmentation. Code is available at // github.com/ haoshao-nku/ medical seg.git.

This work aims to improve the efficiency of text-to-image diffusion models. While diffusion models use computationally expensive UNet-based denoising operations in every generation step, we identify that not all operations are equally relevant for the final output quality. In particular, we observe that UNet layers operating on high-res feature maps are relatively sensitive to small perturbations. In contrast, low-res feature maps influence the semantic layout of the final image and can often be perturbed with no noticeable change in the output. Based on this observation, we propose Clockwork Diffusion, a method that periodically reuses computation from preceding denoising steps to approximate low-res feature maps at one or more subsequent steps. For multiple baselines, and for both text-to-image generation and image editing, we demonstrate that Clockwork leads to comparable or improved perceptual scores with drastically reduced computational complexity. As an example, for Stable Diffusion v1.5 with 8 DPM++ steps we save 32% of FLOPs with negligible FID and CLIP change.

Existing recurrent optical flow estimation networks are computationally expensive since they use a fixed large number of iterations to update the flow field for each sample. An efficient network should skip iterations when the flow improvement is limited. In this paper, we develop a Context-Aware Iteration Policy Network for efficient optical flow estimation, which determines the optimal number of iterations per sample. The policy network achieves this by learning contextual information to realize whether flow improvement is bottlenecked or minimal. On the one hand, we use iteration embedding and historical hidden cell, which include previous iterations information, to convey how flow has changed from previous iterations. On the other hand, we use the incremental loss to make the policy network implicitly perceive the magnitude of optical flow improvement in the subsequent iteration. Furthermore, the computational complexity in our dynamic network is controllable, allowing us to satisfy various resource preferences with a single trained model. Our policy network can be easily integrated into state-of-the-art optical flow networks. Extensive experiments show that our method maintains performance while reducing FLOPs by about 40%/20% for the Sintel/KITTI datasets.

A standard tool for modelling real-world optimisation problems is mixed-integer programming (MIP). However, for many of these problems there is either incomplete information describing variable relations, or the relations between variables are highly complex. To overcome both these hurdles, machine learning (ML) models are often used and embedded in the MIP as surrogate models to represent these relations. Due to the large amount of available ML frameworks, formulating ML models into MIPs is highly non-trivial. In this paper we propose a tool for the automatic MIP formulation of trained ML models, allowing easy integration of ML constraints into MIPs. In addition, we introduce a library of MIP instances with embedded ML constraints. The project is available at //github.com/Opt-Mucca/PySCIPOpt-ML.

Referring expression segmentation (RES) aims at segmenting the foreground masks of the entities that match the descriptive natural language expression. Previous datasets and methods for classic RES task heavily rely on the prior assumption that one expression must refer to object-level targets. In this paper, we take a step further to finer-grained part-level RES task. To promote the object-level RES task towards finer-grained vision-language understanding, we put forward a new multi-granularity referring expression segmentation (MRES) task and construct an evaluation benchmark called RefCOCOm by manual annotations. By employing our automatic model-assisted data engine, we build the largest visual grounding dataset namely MRES-32M, which comprises over 32.2M high-quality masks and captions on the provided 1M images. Besides, a simple yet strong model named UniRES is designed to accomplish the unified object-level and part-level grounding task. Extensive experiments on our RefCOCOm for MRES and three datasets (i.e., RefCOCO(+/g) for classic RES task demonstrate the superiority of our method over previous state-of-the-art methods. To foster future research into fine-grained visual grounding, our benchmark RefCOCOm, the MRES-32M dataset and model UniRES will be publicly available at //github.com/Rubics-Xuan/MRES

Efficient traffic signal control is critical for reducing traffic congestion and improving overall transportation efficiency. The dynamic nature of traffic flow has prompted researchers to explore Reinforcement Learning (RL) for traffic signal control (TSC). Compared with traditional methods, RL-based solutions have shown preferable performance. However, the application of RL-based traffic signal controllers in the real world is limited by the low sample efficiency and high computational requirements of these solutions. In this work, we propose DTLight, a simple yet powerful lightweight Decision Transformer-based TSC method that can learn policy from easily accessible offline datasets. DTLight novelly leverages knowledge distillation to learn a lightweight controller from a well-trained larger teacher model to reduce implementation computation. Additionally, it integrates adapter modules to mitigate the expenses associated with fine-tuning, which makes DTLight practical for online adaptation with minimal computation and only a few fine-tuning steps during real deployment. Moreover, DTLight is further enhanced to be more applicable to real-world TSC problems. Extensive experiments on synthetic and real-world scenarios show that DTLight pre-trained purely on offline datasets can outperform state-of-the-art online RL-based methods in most scenarios. Experiment results also show that online fine-tuning further improves the performance of DTLight by up to 42.6% over the best online RL baseline methods. In this work, we also introduce Datasets specifically designed for TSC with offline RL (referred to as DTRL). Our datasets and code are publicly available.

Deep models, e.g., CNNs and Vision Transformers, have achieved impressive achievements in many vision tasks in the closed world. However, novel classes emerge from time to time in our ever-changing world, requiring a learning system to acquire new knowledge continually. For example, a robot needs to understand new instructions, and an opinion monitoring system should analyze emerging topics every day. Class-Incremental Learning (CIL) enables the learner to incorporate the knowledge of new classes incrementally and build a universal classifier among all seen classes. Correspondingly, when directly training the model with new class instances, a fatal problem occurs -- the model tends to catastrophically forget the characteristics of former ones, and its performance drastically degrades. There have been numerous efforts to tackle catastrophic forgetting in the machine learning community. In this paper, we survey comprehensively recent advances in deep class-incremental learning and summarize these methods from three aspects, i.e., data-centric, model-centric, and algorithm-centric. We also provide a rigorous and unified evaluation of 16 methods in benchmark image classification tasks to find out the characteristics of different algorithms empirically. Furthermore, we notice that the current comparison protocol ignores the influence of memory budget in model storage, which may result in unfair comparison and biased results. Hence, we advocate fair comparison by aligning the memory budget in evaluation, as well as several memory-agnostic performance measures. The source code to reproduce these evaluations is available at //github.com/zhoudw-zdw/CIL_Survey/

The difficulty of deploying various deep learning (DL) models on diverse DL hardwares has boosted the research and development of DL compilers in the community. Several DL compilers have been proposed from both industry and academia such as Tensorflow XLA and TVM. Similarly, the DL compilers take the DL models described in different DL frameworks as input, and then generate optimized codes for diverse DL hardwares as output. However, none of the existing survey has analyzed the unique design of the DL compilers comprehensively. In this paper, we perform a comprehensive survey of existing DL compilers by dissecting the commonly adopted design in details, with emphasis on the DL oriented multi-level IRs, and frontend/backend optimizations. Specifically, we provide a comprehensive comparison among existing DL compilers from various aspects. In addition, we present detailed analysis of the multi-level IR design and compiler optimization techniques. Finally, several insights are highlighted as the potential research directions of DL compiler. This is the first survey paper focusing on the unique design of DL compiler, which we hope can pave the road for future research towards the DL compiler.

北京阿比特科技有限公司