亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We present a new residual-type energy-norm a posteriori error analysis for interior penalty discontinuous Galerkin (dG) methods for linear elliptic problems. The new error bounds are also applicable to dG methods on meshes consisting of elements with very general polygonal/polyhedral shapes. The case of simplicial and/or box-type elements is included in the analysis as a special case. In particular, for the upper bounds, an arbitrary number of very small faces are allowed on each polygonal/polyhedral element, as long as certain mild shape regularity assumptions are satisfied. As a corollary, the present analysis generalizes known a posteriori error bounds for dG methods, allowing in particular for meshes with an arbitrary number of irregular hanging nodes per element. The proof hinges on a new conforming recovery strategy in conjunction with a Helmholtz decomposition formula. The resulting a posteriori error bound involves jumps on the tangential derivatives along elemental faces. Local lower bounds are also proven for a number of practical cases. Numerical experiments are also presented, highlighting the practical value of the derived a posteriori error bounds as error estimators.

相關內容

The proximal Galerkin finite element method is a high-order, low iteration complexity, nonlinear numerical method that preserves the geometric and algebraic structure of bound constraints in infinite-dimensional function spaces. This paper introduces the proximal Galerkin method and applies it to solve free boundary problems, enforce discrete maximum principles, and develop scalable, mesh-independent algorithms for optimal design. The paper leads to a derivation of the latent variable proximal point (LVPP) algorithm: an unconditionally stable alternative to the interior point method. LVPP is an infinite-dimensional optimization algorithm that may be viewed as having an adaptive barrier function that is updated with a new informative prior at each (outer loop) optimization iteration. One of the main benefits of this algorithm is witnessed when analyzing the classical obstacle problem. Therein, we find that the original variational inequality can be replaced by a sequence of semilinear partial differential equations (PDEs) that are readily discretized and solved with, e.g., high-order finite elements. Throughout this work, we arrive at several unexpected contributions that may be of independent interest. These include (1) a semilinear PDE we refer to as the entropic Poisson equation; (2) an algebraic/geometric connection between high-order positivity-preserving discretizations and certain infinite-dimensional Lie groups; and (3) a gradient-based, bound-preserving algorithm for two-field density-based topology optimization. The complete latent variable proximal Galerkin methodology combines ideas from nonlinear programming, functional analysis, tropical algebra, and differential geometry and can potentially lead to new synergies among these areas as well as within variational and numerical analysis.

In this paper, we propose a human trajectory prediction model that combines a Long Short-Term Memory (LSTM) network with an attention mechanism. To do that, we use attention scores to determine which parts of the input data the model should focus on when making predictions. Attention scores are calculated for each input feature, with a higher score indicating the greater significance of that feature in predicting the output. Initially, these scores are determined for the target human position, velocity, and their neighboring individual's positions and velocities. By using attention scores, our model can prioritize the most relevant information in the input data and make more accurate predictions. We extract attention scores from our attention mechanism and integrate them into the trajectory prediction module to predict human future trajectories. To achieve this, we introduce a new neural layer that processes attention scores after extracting them and concatenates them with positional information. We evaluate our approach on the publicly available ETH and UCY datasets and measure its performance using the final displacement error (FDE) and average displacement error (ADE) metrics. We show that our modified algorithm performs better than the Social LSTM in predicting the future trajectory of pedestrians in crowded spaces. Specifically, our model achieves an improvement of 6.2% in ADE and 6.3% in FDE compared to the Social LSTM results in the literature.

We introduce new control-volume finite-element discretization schemes suitable for solving the Stokes problem. Within a common framework, we present different approaches for constructing such schemes. The first and most established strategy employs a non-overlapping partitioning into control volumes. The second represents a new idea by splitting into two sets of control volumes, the first set yielding a partition of the domain and the second containing the remaining overlapping control volumes required for stability. The third represents a hybrid approach where finite volumes are combined with finite elements based on a hierarchical splitting of the ansatz space. All approaches are based on typical finite element function spaces but yield locally mass and momentum conservative discretization schemes that can be interpreted as finite volume schemes. We apply all strategies to the inf-sub stable MINI finite-element pair. Various test cases, including convergence tests and the numerical observation of the boundedness of the number of preconditioned Krylov solver iterations, as well as more complex scenarios of flow around obstacles or through a three-dimensional vessel bifurcation, demonstrate the stability and robustness of the schemes.

This study focuses on the presence of (multi)fractal structures in confined hadronic matter through the momentum distributions of mesons produced in proton-proton collisions between 23 GeV and 63 GeV. The analysis demonstrates that the $q$-exponential behaviour of the particle momentum distributions is consistent with fractal characteristics, exhibiting fractal structures in confined hadronic matter with features similar to those observed in the deconfined quark-gluon plasma (QGP) regime. Furthermore, the systematic analysis of meson production in hadronic collisions at energies below 1 TeV suggests that specific fractal parameters are universal, independently of confinement or deconfinement, while others may be influenced by the quark content of the produced meson. These results pave the way for further research exploring the implications of fractal structures on various physical distributions and offer insights into the nature of the phase transition between confined and deconfined regimes.

This paper presents the error analysis of numerical methods on graded meshes for stochastic Volterra equations with weakly singular kernels. We first prove a novel regularity estimate for the exact solution via analyzing the associated convolution structure. This reveals that the exact solution exhibits an initial singularity in the sense that its H\"older continuous exponent on any neighborhood of $t=0$ is lower than that on every compact subset of $(0,T]$. Motivated by the initial singularity, we then construct the Euler--Maruyama method, fast Euler--Maruyama method, and Milstein method based on graded meshes. By establishing their pointwise-in-time error estimates, we give the grading exponents of meshes to attain the optimal uniform-in-time convergence orders, where the convergence orders improve those of the uniform mesh case. Numerical experiments are finally reported to confirm the sharpness of theoretical findings.

Recently, several algorithms have been proposed for decomposing reactive synthesis specifications into independent and simpler sub-specifications. Being inspired by one of the approaches, developed by Antonio Iannopollo (2018), who designed the so-called (DC) algorithm, we present here our solution that takes his ideas further and provides mathematical formalisation of the strategy behind DC. We rigorously define the main notions involved in the algorithm, explain the technique, and demonstrate its application on examples. The core technique of DC is based on the detection of independent variables in linear temporal logic formulae by exploiting the power and efficiency of a model checker. Although the DC algorithm is sound, it is not complete, as its author already pointed out. In this paper, we provide a counterexample that shows this fact and propose relevant changes to adapt the original DC strategy to ensure its correctness. The modification of DC and the detailed proof of its soundness and completeness are the main contributions of this work.

We present a multigrid algorithm to solve efficiently the large saddle-point systems of equations that typically arise in PDE-constrained optimization under uncertainty. The algorithm is based on a collective smoother that at each iteration sweeps over the nodes of the computational mesh, and solves a reduced saddle-point system whose size depends on the number $N$ of samples used to discretized the probability space. We show that this reduced system can be solved with optimal $O(N)$ complexity. We test the multigrid method on three problems: a linear-quadratic problem for which the multigrid method is used to solve directly the linear optimality system; a nonsmooth problem with box constraints and $L^1$-norm penalization on the control, in which the multigrid scheme is used within a semismooth Newton iteration; a risk-adverse problem with the smoothed CVaR risk measure where the multigrid method is called within a preconditioned Newton iteration. In all cases, the multigrid algorithm exhibits very good performances and robustness with respect to all parameters of interest.

This paper develops a new vascular respiratory motion compensation algorithm, Motion-Related Compensation (MRC), to conduct vascular respiratory motion compensation by extrapolating the correlation between invisible vascular and visible non-vascular. Robot-assisted vascular intervention can significantly reduce the radiation exposure of surgeons. In robot-assisted image-guided intervention, blood vessels are constantly moving/deforming due to respiration, and they are invisible in the X-ray images unless contrast agents are injected. The vascular respiratory motion compensation technique predicts 2D vascular roadmaps in live X-ray images. When blood vessels are visible after contrast agents injection, vascular respiratory motion compensation is conducted based on the sparse Lucas-Kanade feature tracker. An MRC model is trained to learn the correlation between vascular and non-vascular motions. During the intervention, the invisible blood vessels are predicted with visible tissues and the trained MRC model. Moreover, a Gaussian-based outlier filter is adopted for refinement. Experiments on in-vivo data sets show that the proposed method can yield vascular respiratory motion compensation in 0.032 sec, with an average error 1.086 mm. Our real-time and accurate vascular respiratory motion compensation approach contributes to modern vascular intervention and surgical robots.

In the present paper, we formulate two versions of Frank--Wolfe algorithm or conditional gradient method to solve the DC optimization problem with an adaptive step size. The DC objective function consists of two components; the first is thought to be differentiable with a continuous Lipschitz gradient, while the second is only thought to be convex. The second version is based on the first and employs finite differences to approximate the gradient of the first component of the objective function. In contrast to past formulations that used the curvature/Lipschitz-type constant of the objective function, the step size computed does not require any constant associated with the components. For the first version, we established that the algorithm is well-defined of the algorithm and that every limit point of the generated sequence is a stationary point of the problem. We also introduce the class of weak-star-convex functions and show that, despite the fact that these functions are non-convex in general, the rate of convergence of the first version of the algorithm to minimize these functions is ${\cal O}(1/k)$. The finite difference used to approximate the gradient in the second version of the Frank-Wolfe algorithm is computed with the step-size adaptively updated using two previous iterations. Unlike previous applications of finite difference in the Frank-Wolfe algorithm, which provided approximate gradients with absolute error, the one used here provides us with a relative error, simplifying the algorithm analysis. In this case, we show that all limit points of the generated sequence for the second version of the Frank-Wolfe algorithm are stationary points for the problem under consideration, and we establish that the rate of convergence for the duality gap is ${\cal O}(1/\sqrt{k})$.

Deep learning is usually described as an experiment-driven field under continuous criticizes of lacking theoretical foundations. This problem has been partially fixed by a large volume of literature which has so far not been well organized. This paper reviews and organizes the recent advances in deep learning theory. The literature is categorized in six groups: (1) complexity and capacity-based approaches for analyzing the generalizability of deep learning; (2) stochastic differential equations and their dynamic systems for modelling stochastic gradient descent and its variants, which characterize the optimization and generalization of deep learning, partially inspired by Bayesian inference; (3) the geometrical structures of the loss landscape that drives the trajectories of the dynamic systems; (4) the roles of over-parameterization of deep neural networks from both positive and negative perspectives; (5) theoretical foundations of several special structures in network architectures; and (6) the increasingly intensive concerns in ethics and security and their relationships with generalizability.

北京阿比特科技有限公司