This work proposes four novel hybrid quadrature schemes for the efficient and accurate evaluation of weakly singular boundary integrals (1/r kernel) on arbitrary smooth surfaces. Such integrals appear in boundary element analysis for several partial differential equations including the Stokes equation for viscous flow and the Helmholtz equation for acoustics. The proposed quadrature schemes apply a Duffy transform-based quadrature rule to surface elements containing the singularity and classical Gaussian quadrature to the remaining elements. Two of the four schemes additionally consider a special treatment for elements near to the singularity, where refined Gaussian quadrature and a new moment-fitting quadrature rule are used. The hybrid quadrature schemes are systematically studied on flat B-spline patches and on NURBS spheres considering two different sphere discretizations: An exact single-patch sphere with degenerate control points at the poles and an approximate discretization that consist of six patches with regular elements. The efficiency of the quadrature schemes is further demonstrated in boundary element analysis for Stokes flow, where steady problems with rotating and translating curved objects are investigated in convergence studies for both, mesh and quadrature refinement. Much higher convergence rates are observed for the proposed new schemes in comparison to classical schemes.
We provide a new sequent calculus that enjoys syntactic cut-elimination and strongly terminating backward proof search for the intuitionistic Strong L\"ob logic $\sf{iSL}$, an intuitionistic modal logic with a provability interpretation. A novel measure on sequents is used to prove both the termination of the naive backward proof search strategy, and the admissibility of cut in a syntactic and direct way, leading to a straightforward cut-elimination procedure. All proofs have been formalised in the interactive theorem prover Coq.
The proximal Galerkin finite element method is a high-order, low iteration complexity, nonlinear numerical method that preserves the geometric and algebraic structure of bound constraints in infinite-dimensional function spaces. This paper introduces the proximal Galerkin method and applies it to solve free boundary problems, enforce discrete maximum principles, and develop scalable, mesh-independent algorithms for optimal design. The paper leads to a derivation of the latent variable proximal point (LVPP) algorithm: an unconditionally stable alternative to the interior point method. LVPP is an infinite-dimensional optimization algorithm that may be viewed as having an adaptive barrier function that is updated with a new informative prior at each (outer loop) optimization iteration. One of the main benefits of this algorithm is witnessed when analyzing the classical obstacle problem. Therein, we find that the original variational inequality can be replaced by a sequence of semilinear partial differential equations (PDEs) that are readily discretized and solved with, e.g., high-order finite elements. Throughout this work, we arrive at several unexpected contributions that may be of independent interest. These include (1) a semilinear PDE we refer to as the entropic Poisson equation; (2) an algebraic/geometric connection between high-order positivity-preserving discretizations and certain infinite-dimensional Lie groups; and (3) a gradient-based, bound-preserving algorithm for two-field density-based topology optimization. The complete latent variable proximal Galerkin methodology combines ideas from nonlinear programming, functional analysis, tropical algebra, and differential geometry and can potentially lead to new synergies among these areas as well as within variational and numerical analysis.
We introduce new control-volume finite-element discretization schemes suitable for solving the Stokes problem. Within a common framework, we present different approaches for constructing such schemes. The first and most established strategy employs a non-overlapping partitioning into control volumes. The second represents a new idea by splitting into two sets of control volumes, the first set yielding a partition of the domain and the second containing the remaining overlapping control volumes required for stability. The third represents a hybrid approach where finite volumes are combined with finite elements based on a hierarchical splitting of the ansatz space. All approaches are based on typical finite element function spaces but yield locally mass and momentum conservative discretization schemes that can be interpreted as finite volume schemes. We apply all strategies to the inf-sub stable MINI finite-element pair. Various test cases, including convergence tests and the numerical observation of the boundedness of the number of preconditioned Krylov solver iterations, as well as more complex scenarios of flow around obstacles or through a three-dimensional vessel bifurcation, demonstrate the stability and robustness of the schemes.
We extend several relative perturbation bounds to Hermitian matrices that are possibly singular, and also develop a general class of relative bounds for Hermitian matrices. As a result, corresponding relative bounds for singular values of rank-deficient $m\times n$ matrices are also obtained using the Jordan-Wielandt matrices. We also present that the main relative bound derived would be invariant with respect to congruence transformation under certain conditions, and compare its sharpness with the Weyl's absolute perturbation bound.
This paper presents the error analysis of numerical methods on graded meshes for stochastic Volterra equations with weakly singular kernels. We first prove a novel regularity estimate for the exact solution via analyzing the associated convolution structure. This reveals that the exact solution exhibits an initial singularity in the sense that its H\"older continuous exponent on any neighborhood of $t=0$ is lower than that on every compact subset of $(0,T]$. Motivated by the initial singularity, we then construct the Euler--Maruyama method, fast Euler--Maruyama method, and Milstein method based on graded meshes. By establishing their pointwise-in-time error estimates, we give the grading exponents of meshes to attain the optimal uniform-in-time convergence orders, where the convergence orders improve those of the uniform mesh case. Numerical experiments are finally reported to confirm the sharpness of theoretical findings.
Model order reduction provides low-complexity high-fidelity surrogate models that allow rapid and accurate solutions of parametric differential equations. The development of reduced order models for parametric nonlinear Hamiltonian systems is still challenged by several factors: (i) the geometric structure encoding the physical properties of the dynamics; (ii) the slowly decaying Kolmogorov $n$-width of conservative dynamics; (iii) the gradient structure of the nonlinear flow velocity; (iv) high variations in the numerical rank of the state as a function of time and parameters. We propose to address these aspects via a structure-preserving adaptive approach that combines symplectic dynamical low-rank approximation with adaptive gradient-preserving hyper-reduction and parameters sampling. Additionally, we propose to vary in time the dimensions of both the reduced basis space and the hyper-reduction space by monitoring the quality of the reduced solution via an error indicator related to the projection error of the Hamiltonian vector field. The resulting adaptive hyper-reduced models preserve the geometric structure of the Hamiltonian flow, do not rely on prior information on the dynamics, and can be solved at a cost that is linear in the dimension of the full order model and linear in the number of test parameters. Numerical experiments demonstrate the improved performances of the resulting fully adaptive models compared to the original and reduced order models.
We present a multigrid algorithm to solve efficiently the large saddle-point systems of equations that typically arise in PDE-constrained optimization under uncertainty. The algorithm is based on a collective smoother that at each iteration sweeps over the nodes of the computational mesh, and solves a reduced saddle-point system whose size depends on the number $N$ of samples used to discretized the probability space. We show that this reduced system can be solved with optimal $O(N)$ complexity. We test the multigrid method on three problems: a linear-quadratic problem for which the multigrid method is used to solve directly the linear optimality system; a nonsmooth problem with box constraints and $L^1$-norm penalization on the control, in which the multigrid scheme is used within a semismooth Newton iteration; a risk-adverse problem with the smoothed CVaR risk measure where the multigrid method is called within a preconditioned Newton iteration. In all cases, the multigrid algorithm exhibits very good performances and robustness with respect to all parameters of interest.
This paper develops a new vascular respiratory motion compensation algorithm, Motion-Related Compensation (MRC), to conduct vascular respiratory motion compensation by extrapolating the correlation between invisible vascular and visible non-vascular. Robot-assisted vascular intervention can significantly reduce the radiation exposure of surgeons. In robot-assisted image-guided intervention, blood vessels are constantly moving/deforming due to respiration, and they are invisible in the X-ray images unless contrast agents are injected. The vascular respiratory motion compensation technique predicts 2D vascular roadmaps in live X-ray images. When blood vessels are visible after contrast agents injection, vascular respiratory motion compensation is conducted based on the sparse Lucas-Kanade feature tracker. An MRC model is trained to learn the correlation between vascular and non-vascular motions. During the intervention, the invisible blood vessels are predicted with visible tissues and the trained MRC model. Moreover, a Gaussian-based outlier filter is adopted for refinement. Experiments on in-vivo data sets show that the proposed method can yield vascular respiratory motion compensation in 0.032 sec, with an average error 1.086 mm. Our real-time and accurate vascular respiratory motion compensation approach contributes to modern vascular intervention and surgical robots.
In the present paper, we formulate two versions of Frank--Wolfe algorithm or conditional gradient method to solve the DC optimization problem with an adaptive step size. The DC objective function consists of two components; the first is thought to be differentiable with a continuous Lipschitz gradient, while the second is only thought to be convex. The second version is based on the first and employs finite differences to approximate the gradient of the first component of the objective function. In contrast to past formulations that used the curvature/Lipschitz-type constant of the objective function, the step size computed does not require any constant associated with the components. For the first version, we established that the algorithm is well-defined of the algorithm and that every limit point of the generated sequence is a stationary point of the problem. We also introduce the class of weak-star-convex functions and show that, despite the fact that these functions are non-convex in general, the rate of convergence of the first version of the algorithm to minimize these functions is ${\cal O}(1/k)$. The finite difference used to approximate the gradient in the second version of the Frank-Wolfe algorithm is computed with the step-size adaptively updated using two previous iterations. Unlike previous applications of finite difference in the Frank-Wolfe algorithm, which provided approximate gradients with absolute error, the one used here provides us with a relative error, simplifying the algorithm analysis. In this case, we show that all limit points of the generated sequence for the second version of the Frank-Wolfe algorithm are stationary points for the problem under consideration, and we establish that the rate of convergence for the duality gap is ${\cal O}(1/\sqrt{k})$.
We investigate a class of parametric elliptic eigenvalue problems with homogeneous essential boundary conditions where the coefficients (and hence the solution $u$) may depend on a parameter $y$. For the efficient approximate evaluation of parameter sensitivities of the first eigenpairs on the entire parameter space we propose and analyse Gevrey class and analytic regularity of the solution with respect to the parameters. This is made possible by a novel proof technique which we introduce and demonstrate in this paper. Our regularity result has immediate implications for convergence of various numerical schemes for parametric elliptic eigenvalue problems, in particular, for elliptic eigenvalue problems with infinitely many parameters arising from elliptic differential operators with random coefficients.