亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Finding optimal adversarial attack strategies is an important topic in reinforcement learning and the Markov decision process. Previous studies usually assume one all-knowing coordinator (attacker) for whom attacking different recipient (victim) agents incurs uniform costs. However, in reality, instead of using one limitless central attacker, the attacks often need to be performed by distributed attack agents. We formulate the problem of performing optimal adversarial agent-to-agent attacks using distributed attack agents, in which we impose distinct cost constraints on each different attacker-victim pair. We propose an optimal method integrating within-step static constrained attack-resource allocation optimization and between-step dynamic programming to achieve the optimal adversarial attack in a multi-agent system. Our numerical results show that the proposed attacks can significantly reduce the rewards received by the attacked agents.

相關內容

The problem of sample complexity of online reinforcement learning is often studied in the literature without taking into account any partial knowledge about the system dynamics that could potentially accelerate the learning process. In this paper, we study the sample complexity of online Q-learning methods when some prior knowledge about the dynamics is available or can be learned efficiently. We focus on systems that evolve according to an additive disturbance model of the form $S_{h+1} = f(S_h, A_h) + W_h$, where $f$ represents the underlying system dynamics, and $W_h$ are unknown disturbances independent of states and actions. In the setting of finite episodic Markov decision processes with $S$ states, $A$ actions, and episode length $H$, we present an optimistic Q-learning algorithm that achieves $\tilde{\mathcal{O}}(\text{Poly}(H)\sqrt{T})$ regret under perfect knowledge of $f$, where $T$ is the total number of interactions with the system. This is in contrast to the typical $\tilde{\mathcal{O}}(\text{Poly}(H)\sqrt{SAT})$ regret for existing Q-learning methods. Further, if only a noisy estimate $\hat{f}$ of $f$ is available, our method can learn an approximately optimal policy in a number of samples that is independent of the cardinalities of state and action spaces. The sub-optimality gap depends on the approximation error $\hat{f}-f$, as well as the Lipschitz constant of the corresponding optimal value function. Our approach does not require modeling of the transition probabilities and enjoys the same memory complexity as model-free methods.

We propose Diffusion Noise Optimization (DNO), a new method that effectively leverages existing motion diffusion models as motion priors for a wide range of motion-related tasks. Instead of training a task-specific diffusion model for each new task, DNO operates by optimizing the diffusion latent noise of an existing pre-trained text-to-motion model. Given the corresponding latent noise of a human motion, it propagates the gradient from the target criteria defined on the motion space through the whole denoising process to update the diffusion latent noise. As a result, DNO supports any use cases where criteria can be defined as a function of motion. In particular, we show that, for motion editing and control, DNO outperforms existing methods in both achieving the objective and preserving the motion content. DNO accommodates a diverse range of editing modes, including changing trajectory, pose, joint locations, or avoiding newly added obstacles. In addition, DNO is effective in motion denoising and completion, producing smooth and realistic motion from noisy and partial inputs. DNO achieves these results at inference time without the need for model retraining, offering great versatility for any defined reward or loss function on the motion representation.

Deep reinforcement learning (RL) has shown remarkable success in specific offline decision-making scenarios, yet its theoretical guarantees are still under development. Existing works on offline RL theory primarily emphasize a few trivial settings, such as linear MDP or general function approximation with strong assumptions and independent data, which lack guidance for practical use. The coupling of deep learning and Bellman residuals makes this problem challenging, in addition to the difficulty of data dependence. In this paper, we establish a non-asymptotic estimation error of pessimistic offline RL using general neural network approximation with $\mathcal{C}$-mixing data regarding the structure of networks, the dimension of datasets, and the concentrability of data coverage, under mild assumptions. Our result shows that the estimation error consists of two parts: the first converges to zero at a desired rate on the sample size with partially controllable concentrability, and the second becomes negligible if the residual constraint is tight. This result demonstrates the explicit efficiency of deep adversarial offline RL frameworks. We utilize the empirical process tool for $\mathcal{C}$-mixing sequences and the neural network approximation theory for the H\"{o}lder class to achieve this. We also develop methods to bound the Bellman estimation error caused by function approximation with empirical Bellman constraint perturbations. Additionally, we present a result that lessens the curse of dimensionality using data with low intrinsic dimensionality and function classes with low complexity. Our estimation provides valuable insights into the development of deep offline RL and guidance for algorithm model design.

We propose a framework for applying reinforcement learning to contextual two-stage stochastic optimization and apply this framework to the problem of energy market bidding of an off-shore wind farm. Reinforcement learning could potentially be used to learn close to optimal solutions for first stage variables of a two-stage stochastic program under different contexts. Under the proposed framework, these solutions would be learned without having to solve the full two-stage stochastic program. We present initial results of training using the DDPG algorithm and present intended future steps to improve performance.

Clustering has been one of the most basic and essential problems in unsupervised learning due to various applications in many critical fields. The recently proposed sum-of-nums (SON) model by Pelckmans et al. (2005), Lindsten et al. (2011) and Hocking et al. (2011) has received a lot of attention. The advantage of the SON model is the theoretical guarantee in terms of perfect recovery, established by Sun et al. (2018). It also provides great opportunities for designing efficient algorithms for solving the SON model. The semismooth Newton based augmented Lagrangian method by Sun et al. (2018) has demonstrated its superior performance over the alternating direction method of multipliers (ADMM) and the alternating minimization algorithm (AMA). In this paper, we propose a Euclidean distance matrix model based on the SON model. An efficient majorization penalty algorithm is proposed to solve the resulting model. Extensive numerical experiments are conducted to demonstrate the efficiency of the proposed model and the majorization penalty algorithm.

We present a numerical method to learn an accurate predictive model for an unknown stochastic dynamical system from its trajectory data. The method seeks to approximate the unknown flow map of the underlying system. It employs the idea of autoencoder to identify the unobserved latent random variables. In our approach, we design an encoding function to discover the latent variables, which are modeled as unit Gaussian, and a decoding function to reconstruct the future states of the system. Both the encoder and decoder are expressed as deep neural networks (DNNs). Once the DNNs are trained by the trajectory data, the decoder serves as a predictive model for the unknown stochastic system. Through an extensive set of numerical examples, we demonstrate that the method is able to produce long-term system predictions by using short bursts of trajectory data. It is also applicable to systems driven by non-Gaussian noises.

Inverse reinforcement learning (IRL) is computationally challenging, with common approaches requiring the solution of multiple reinforcement learning (RL) sub-problems. This work motivates the use of potential-based reward shaping to reduce the computational burden of each RL sub-problem. This work serves as a proof-of-concept and we hope will inspire future developments towards computationally efficient IRL.

The conjoining of dynamical systems and deep learning has become a topic of great interest. In particular, neural differential equations (NDEs) demonstrate that neural networks and differential equation are two sides of the same coin. Traditional parameterised differential equations are a special case. Many popular neural network architectures, such as residual networks and recurrent networks, are discretisations. NDEs are suitable for tackling generative problems, dynamical systems, and time series (particularly in physics, finance, ...) and are thus of interest to both modern machine learning and traditional mathematical modelling. NDEs offer high-capacity function approximation, strong priors on model space, the ability to handle irregular data, memory efficiency, and a wealth of available theory on both sides. This doctoral thesis provides an in-depth survey of the field. Topics include: neural ordinary differential equations (e.g. for hybrid neural/mechanistic modelling of physical systems); neural controlled differential equations (e.g. for learning functions of irregular time series); and neural stochastic differential equations (e.g. to produce generative models capable of representing complex stochastic dynamics, or sampling from complex high-dimensional distributions). Further topics include: numerical methods for NDEs (e.g. reversible differential equations solvers, backpropagation through differential equations, Brownian reconstruction); symbolic regression for dynamical systems (e.g. via regularised evolution); and deep implicit models (e.g. deep equilibrium models, differentiable optimisation). We anticipate this thesis will be of interest to anyone interested in the marriage of deep learning with dynamical systems, and hope it will provide a useful reference for the current state of the art.

Contrastive learning models have achieved great success in unsupervised visual representation learning, which maximize the similarities between feature representations of different views of the same image, while minimize the similarities between feature representations of views of different images. In text summarization, the output summary is a shorter form of the input document and they have similar meanings. In this paper, we propose a contrastive learning model for supervised abstractive text summarization, where we view a document, its gold summary and its model generated summaries as different views of the same mean representation and maximize the similarities between them during training. We improve over a strong sequence-to-sequence text generation model (i.e., BART) on three different summarization datasets. Human evaluation also shows that our model achieves better faithfulness ratings compared to its counterpart without contrastive objectives.

The aim of this work is to develop a fully-distributed algorithmic framework for training graph convolutional networks (GCNs). The proposed method is able to exploit the meaningful relational structure of the input data, which are collected by a set of agents that communicate over a sparse network topology. After formulating the centralized GCN training problem, we first show how to make inference in a distributed scenario where the underlying data graph is split among different agents. Then, we propose a distributed gradient descent procedure to solve the GCN training problem. The resulting model distributes computation along three lines: during inference, during back-propagation, and during optimization. Convergence to stationary solutions of the GCN training problem is also established under mild conditions. Finally, we propose an optimization criterion to design the communication topology between agents in order to match with the graph describing data relationships. A wide set of numerical results validate our proposal. To the best of our knowledge, this is the first work combining graph convolutional neural networks with distributed optimization.

北京阿比特科技有限公司