亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this paper, we apply transformer-based Natural Language Generation (NLG) techniques to the problem of text simplification. Currently, there are only a few German datasets available for text simplification, even fewer with larger and aligned documents, and not a single one with narrative texts. In this paper, we explore to which degree modern NLG techniques can be applied to German narrative text simplifications. We use Longformer attention and a pre-trained mBART model. Our findings indicate that the existing approaches for German are not able to solve the task properly. We conclude on a few directions for future research to address this problem.

相關內容

We propose a novel approach based on Denoising Diffusion Probabilistic Models (DDPMs) to control nonlinear dynamical systems. DDPMs are the state-of-art of generative models that have achieved success in a wide variety of sampling tasks. In our framework, we pose the feedback control problem as a generative task of drawing samples from a target set under control system constraints. The forward process of DDPMs constructs trajectories originating from a target set by adding noise. We learn to control a dynamical system in reverse such that the terminal state belongs to the target set. For control-affine systems without drift, we prove that the control system can exactly track the trajectory of the forward process in reverse, whenever the the Lie bracket based condition for controllability holds. We numerically study our approach on various nonlinear systems and verify our theoretical results. We also conduct numerical experiments for cases beyond our theoretical results on a physics-engine.

In this paper, we propose a novel graph neural network-based recommendation model called KGLN, which leverages Knowledge Graph (KG) information to enhance the accuracy and effectiveness of personalized recommendations. We first use a single-layer neural network to merge individual node features in the graph, and then adjust the aggregation weights of neighboring entities by incorporating influence factors. The model evolves from a single layer to multiple layers through iteration, enabling entities to access extensive multi-order associated entity information. The final step involves integrating features of entities and users to produce a recommendation score. The model performance was evaluated by comparing its effects on various aggregation methods and influence factors. In tests over the MovieLen-1M and Book-Crossing datasets, KGLN shows an Area Under the ROC curve (AUC) improvement of 0.3% to 5.9% and 1.1% to 8.2%, respectively, which is better than existing benchmark methods like LibFM, DeepFM, Wide&Deep, and RippleNet.

Spiking Neural Networks (SNNs), providing more realistic neuronal dynamics, have shown to achieve performance comparable to Artificial Neural Networks (ANNs) in several machine learning tasks. Information is processed as spikes within SNNs in an event-based mechanism that significantly reduces energy consumption. However, training SNNs is challenging due to the non-differentiable nature of the spiking mechanism. Traditional approaches, such as Backpropagation Through Time (BPTT), have shown effectiveness but comes with additional computational and memory costs and are biologically implausible. In contrast, recent works propose alternative learning methods with varying degrees of locality, demonstrating success in classification tasks. In this work, we show that these methods share similarities during the training process, while they present a trade-off between biological plausibility and performance. Further, this research examines the implicitly recurrent nature of SNNs and investigates the influence of addition of explicit recurrence to SNNs. We experimentally prove that the addition of explicit recurrent weights enhances the robustness of SNNs. We also investigate the performance of local learning methods under gradient and non-gradient based adversarial attacks.

In this paper, we propose a novel Feature Decomposition and Reconstruction Learning (FDRL) method for effective facial expression recognition. We view the expression information as the combination of the shared information (expression similarities) across different expressions and the unique information (expression-specific variations) for each expression. More specifically, FDRL mainly consists of two crucial networks: a Feature Decomposition Network (FDN) and a Feature Reconstruction Network (FRN). In particular, FDN first decomposes the basic features extracted from a backbone network into a set of facial action-aware latent features to model expression similarities. Then, FRN captures the intra-feature and inter-feature relationships for latent features to characterize expression-specific variations, and reconstructs the expression feature. To this end, two modules including an intra-feature relation modeling module and an inter-feature relation modeling module are developed in FRN. Experimental results on both the in-the-lab databases (including CK+, MMI, and Oulu-CASIA) and the in-the-wild databases (including RAF-DB and SFEW) show that the proposed FDRL method consistently achieves higher recognition accuracy than several state-of-the-art methods. This clearly highlights the benefit of feature decomposition and reconstruction for classifying expressions.

Graph Neural Networks (GNNs) have been shown to be effective models for different predictive tasks on graph-structured data. Recent work on their expressive power has focused on isomorphism tasks and countable feature spaces. We extend this theoretical framework to include continuous features - which occur regularly in real-world input domains and within the hidden layers of GNNs - and we demonstrate the requirement for multiple aggregation functions in this context. Accordingly, we propose Principal Neighbourhood Aggregation (PNA), a novel architecture combining multiple aggregators with degree-scalers (which generalize the sum aggregator). Finally, we compare the capacity of different models to capture and exploit the graph structure via a novel benchmark containing multiple tasks taken from classical graph theory, alongside existing benchmarks from real-world domains, all of which demonstrate the strength of our model. With this work, we hope to steer some of the GNN research towards new aggregation methods which we believe are essential in the search for powerful and robust models.

In this paper, we proposed to apply meta learning approach for low-resource automatic speech recognition (ASR). We formulated ASR for different languages as different tasks, and meta-learned the initialization parameters from many pretraining languages to achieve fast adaptation on unseen target language, via recently proposed model-agnostic meta learning algorithm (MAML). We evaluated the proposed approach using six languages as pretraining tasks and four languages as target tasks. Preliminary results showed that the proposed method, MetaASR, significantly outperforms the state-of-the-art multitask pretraining approach on all target languages with different combinations of pretraining languages. In addition, since MAML's model-agnostic property, this paper also opens new research direction of applying meta learning to more speech-related applications.

In this paper, we propose Latent Relation Language Models (LRLMs), a class of language models that parameterizes the joint distribution over the words in a document and the entities that occur therein via knowledge graph relations. This model has a number of attractive properties: it not only improves language modeling performance, but is also able to annotate the posterior probability of entity spans for a given text through relations. Experiments demonstrate empirical improvements over both a word-based baseline language model and a previous approach that incorporates knowledge graph information. Qualitative analysis further demonstrates the proposed model's ability to learn to predict appropriate relations in context.

In this paper, we present an accurate and scalable approach to the face clustering task. We aim at grouping a set of faces by their potential identities. We formulate this task as a link prediction problem: a link exists between two faces if they are of the same identity. The key idea is that we find the local context in the feature space around an instance (face) contains rich information about the linkage relationship between this instance and its neighbors. By constructing sub-graphs around each instance as input data, which depict the local context, we utilize the graph convolution network (GCN) to perform reasoning and infer the likelihood of linkage between pairs in the sub-graphs. Experiments show that our method is more robust to the complex distribution of faces than conventional methods, yielding favorably comparable results to state-of-the-art methods on standard face clustering benchmarks, and is scalable to large datasets. Furthermore, we show that the proposed method does not need the number of clusters as prior, is aware of noises and outliers, and can be extended to a multi-view version for more accurate clustering accuracy.

In this paper, we introduce the Reinforced Mnemonic Reader for machine reading comprehension tasks, which enhances previous attentive readers in two aspects. First, a reattention mechanism is proposed to refine current attentions by directly accessing to past attentions that are temporally memorized in a multi-round alignment architecture, so as to avoid the problems of attention redundancy and attention deficiency. Second, a new optimization approach, called dynamic-critical reinforcement learning, is introduced to extend the standard supervised method. It always encourages to predict a more acceptable answer so as to address the convergence suppression problem occurred in traditional reinforcement learning algorithms. Extensive experiments on the Stanford Question Answering Dataset (SQuAD) show that our model achieves state-of-the-art results. Meanwhile, our model outperforms previous systems by over 6% in terms of both Exact Match and F1 metrics on two adversarial SQuAD datasets.

In this paper, we propose a conceptually simple and geometrically interpretable objective function, i.e. additive margin Softmax (AM-Softmax), for deep face verification. In general, the face verification task can be viewed as a metric learning problem, so learning large-margin face features whose intra-class variation is small and inter-class difference is large is of great importance in order to achieve good performance. Recently, Large-margin Softmax and Angular Softmax have been proposed to incorporate the angular margin in a multiplicative manner. In this work, we introduce a novel additive angular margin for the Softmax loss, which is intuitively appealing and more interpretable than the existing works. We also emphasize and discuss the importance of feature normalization in the paper. Most importantly, our experiments on LFW BLUFR and MegaFace show that our additive margin softmax loss consistently performs better than the current state-of-the-art methods using the same network architecture and training dataset. Our code has also been made available at //github.com/happynear/AMSoftmax

北京阿比特科技有限公司