In this paper, we propose two novel approaches, which integrate long-content information into the factorized neural transducer (FNT) based architecture in both non-streaming (referred to as LongFNT ) and streaming (referred to as SLongFNT ) scenarios. We first investigate whether long-content transcriptions can improve the vanilla conformer transducer (C-T) models. Our experiments indicate that the vanilla C-T models do not exhibit improved performance when utilizing long-content transcriptions, possibly due to the predictor network of C-T models not functioning as a pure language model. Instead, FNT shows its potential in utilizing long-content information, where we propose the LongFNT model and explore the impact of long-content information in both text (LongFNT-Text) and speech (LongFNT-Speech). The proposed LongFNT-Text and LongFNT-Speech models further complement each other to achieve better performance, with transcription history proving more valuable to the model. The effectiveness of our LongFNT approach is evaluated on LibriSpeech and GigaSpeech corpora, and obtains relative 19% and 12% word error rate reduction, respectively. Furthermore, we extend the LongFNT model to the streaming scenario, which is named SLongFNT , consisting of SLongFNT-Text and SLongFNT-Speech approaches to utilize long-content text and speech information. Experiments show that the proposed SLongFNT model achieves relative 26% and 17% WER reduction on LibriSpeech and GigaSpeech respectively while keeping a good latency, compared to the FNT baseline. Overall, our proposed LongFNT and SLongFNT highlight the significance of considering long-content speech and transcription knowledge for improving both non-streaming and streaming speech recognition systems.
In this paper, we introduce an alternative approach to enhancing Multi-Agent Reinforcement Learning (MARL) through the integration of domain knowledge and attention-based policy mechanisms. Our methodology focuses on the incorporation of domain-specific expertise into the learning process, which simplifies the development of collaborative behaviors. This approach aims to reduce the complexity and learning overhead typically associated with MARL by enabling agents to concentrate on essential aspects of complex tasks, thus optimizing the learning curve. The utilization of attention mechanisms plays a key role in our model. It allows for the effective processing of dynamic context data and nuanced agent interactions, leading to more refined decision-making. Applied in standard MARL scenarios, such as the Stanford Intelligent Systems Laboratory (SISL) Pursuit and Multi-Particle Environments (MPE) Simple Spread, our method has been shown to improve both learning efficiency and the effectiveness of collaborative behaviors. The results indicate that our attention-based approach can be a viable approach for improving the efficiency of MARL training process, integrating domain-specific knowledge at the action level.
In this paper, we introduce a privacy-preserving stable diffusion framework leveraging homomorphic encryption, called HE-Diffusion, which primarily focuses on protecting the denoising phase of the diffusion process. HE-Diffusion is a tailored encryption framework specifically designed to align with the unique architecture of stable diffusion, ensuring both privacy and functionality. To address the inherent computational challenges, we propose a novel min-distortion method that enables efficient partial image encryption, significantly reducing the overhead without compromising the model's output quality. Furthermore, we adopt a sparse tensor representation to expedite computational operations, enhancing the overall efficiency of the privacy-preserving diffusion process. We successfully implement HE-based privacy-preserving stable diffusion inference. The experimental results show that HE-Diffusion achieves 500 times speedup compared with the baseline method, and reduces time cost of the homomorphically encrypted inference to the minute level. Both the performance and accuracy of the HE-Diffusion are on par with the plaintext counterpart. Our approach marks a significant step towards integrating advanced cryptographic techniques with state-of-the-art generative models, paving the way for privacy-preserving and efficient image generation in critical applications.
In this paper, we present a novel approach that combines deep metric learning and synthetic data generation using diffusion models for out-of-distribution (OOD) detection. One popular approach for OOD detection is outlier exposure, where models are trained using a mixture of in-distribution (ID) samples and ``seen" OOD samples. For the OOD samples, the model is trained to minimize the KL divergence between the output probability and the uniform distribution while correctly classifying the in-distribution (ID) data. In this paper, we propose a label-mixup approach to generate synthetic OOD data using Denoising Diffusion Probabilistic Models (DDPMs). Additionally, we explore recent advancements in metric learning to train our models. In the experiments, we found that metric learning-based loss functions perform better than the softmax. Furthermore, the baseline models (including softmax, and metric learning) show a significant improvement when trained with the generated OOD data. Our approach outperforms strong baselines in conventional OOD detection metrics.
In this paper, we present a novel framework for enhancing the performance of Quanvolutional Neural Networks (QuNNs) by introducing trainable quanvolutional layers and addressing the critical challenges associated with them. Traditional quanvolutional layers, although beneficial for feature extraction, have largely been static, offering limited adaptability. Unlike state-of-the-art, our research overcomes this limitation by enabling training within these layers, significantly increasing the flexibility and potential of QuNNs. However, the introduction of multiple trainable quanvolutional layers induces complexities in gradient-based optimization, primarily due to the difficulty in accessing gradients across these layers. To resolve this, we propose a novel architecture, Residual Quanvolutional Neural Networks (ResQuNNs), leveraging the concept of residual learning, which facilitates the flow of gradients by adding skip connections between layers. By inserting residual blocks between quanvolutional layers, we ensure enhanced gradient access throughout the network, leading to improved training performance. Moreover, we provide empirical evidence on the strategic placement of these residual blocks within QuNNs. Through extensive experimentation, we identify an efficient configuration of residual blocks, which enables gradients across all the layers in the network that eventually results in efficient training. Our findings suggest that the precise location of residual blocks plays a crucial role in maximizing the performance gains in QuNNs. Our results mark a substantial step forward in the evolution of quantum deep learning, offering new avenues for both theoretical development and practical quantum computing applications.
In this paper, we propose a novel method for speaker adaptation in lip reading, motivated by two observations. Firstly, a speaker's own characteristics can always be portrayed well by his/her few facial images or even a single image with shallow networks, while the fine-grained dynamic features associated with speech content expressed by the talking face always need deep sequential networks to represent accurately. Therefore, we treat the shallow and deep layers differently for speaker adaptive lip reading. Secondly, we observe that a speaker's unique characteristics ( e.g. prominent oral cavity and mandible) have varied effects on lip reading performance for different words and pronunciations, necessitating adaptive enhancement or suppression of the features for robust lip reading. Based on these two observations, we propose to take advantage of the speaker's own characteristics to automatically learn separable hidden unit contributions with different targets for shallow layers and deep layers respectively. For shallow layers where features related to the speaker's characteristics are stronger than the speech content related features, we introduce speaker-adaptive features to learn for enhancing the speech content features. For deep layers where both the speaker's features and the speech content features are all expressed well, we introduce the speaker-adaptive features to learn for suppressing the speech content irrelevant noise for robust lip reading. Our approach consistently outperforms existing methods, as confirmed by comprehensive analysis and comparison across different settings. Besides the evaluation on the popular LRW-ID and GRID datasets, we also release a new dataset for evaluation, CAS-VSR-S68h, to further assess the performance in an extreme setting where just a few speakers are available but the speech content covers a large and diversified range.
Image forensics has become increasingly crucial in our daily lives. Among various types of forgeries, copy-move forgery detection has received considerable attention within the academic community. Keypoint-based algorithms, particularly those based on Scale Invariant Feature Transform, have achieved promising outcomes. However, most of keypoint detection algorithms failed to generate sufficient matches when tampered patches were occurred in smooth areas, leading to insufficient matches. Therefore, this paper introduces entropy images to determine the coordinates and scales of keypoints based on Scale Invariant Feature Transform detector, which make the pre-processing more suitable for solving the above problems. Furthermore, an overlapped entropy level clustering algorithm is developed to mitigate the increased matching complexity caused by the non-ideal distribution of gray values in keypoints. Experimental results demonstrate that our algorithm achieves a good balance between performance and time efficiency.
We present a decentralized control algorithm for a minimalist robotic swarm lacking memory, explicit communication, or relative position information, to encapsulate multiple diffusive target sources in a bounded environment. The state-of-the-art approaches generally require either local communication or relative localization to provide guarantees of convergence and safety. We quantify trade-offs between task, control, and robot parameters for guaranteed safe convergence to all the sources. Furthermore, our algorithm is robust to occlusions and noise in the sensor measurements as we demonstrate in simulation.
Non-IID data present a tough challenge for federated learning. In this paper, we explore a novel idea of facilitating pairwise collaborations between clients with similar data. We propose FedAMP, a new method employing federated attentive message passing to facilitate similar clients to collaborate more. We establish the convergence of FedAMP for both convex and non-convex models, and propose a heuristic method to further improve the performance of FedAMP when clients adopt deep neural networks as personalized models. Our extensive experiments on benchmark data sets demonstrate the superior performance of the proposed methods.
The key issue of few-shot learning is learning to generalize. In this paper, we propose a large margin principle to improve the generalization capacity of metric based methods for few-shot learning. To realize it, we develop a unified framework to learn a more discriminative metric space by augmenting the softmax classification loss function with a large margin distance loss function for training. Extensive experiments on two state-of-the-art few-shot learning models, graph neural networks and prototypical networks, show that our method can improve the performance of existing models substantially with very little computational overhead, demonstrating the effectiveness of the large margin principle and the potential of our method.
In this paper, we introduce the Reinforced Mnemonic Reader for machine reading comprehension tasks, which enhances previous attentive readers in two aspects. First, a reattention mechanism is proposed to refine current attentions by directly accessing to past attentions that are temporally memorized in a multi-round alignment architecture, so as to avoid the problems of attention redundancy and attention deficiency. Second, a new optimization approach, called dynamic-critical reinforcement learning, is introduced to extend the standard supervised method. It always encourages to predict a more acceptable answer so as to address the convergence suppression problem occurred in traditional reinforcement learning algorithms. Extensive experiments on the Stanford Question Answering Dataset (SQuAD) show that our model achieves state-of-the-art results. Meanwhile, our model outperforms previous systems by over 6% in terms of both Exact Match and F1 metrics on two adversarial SQuAD datasets.