亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Multi-Level Intermediate Representation (MLIR) is a novel compiler infrastructure that aims to provide modular and extensible components to facilitate building domain specific compilers. However, since MLIR models programs at an intermediate level of abstraction, and most extant frontends are at a very high level of abstraction, the semantics and mechanics of the fundamental transformations available in MLIR are difficult to investigate and employ in and of themselves. To address these challenges, we have developed \texttt{nelli}, a lightweight, Python-embedded, domain-specific, language for generating MLIR code. \texttt{nelli} leverages existing MLIR infrastructure to develop Pythonic syntax and semantics for various MLIR features. We describe \texttt{nelli}'s design goals, discuss key details of our implementation, and demonstrate how \texttt{nelli} enables easily defining and lowering compute kernels to diverse hardware platforms.

相關內容

iOS 8 提供的應用間和應用跟系統的功能交互特性。
  • Today (iOS and OS X): widgets for the Today view of Notification Center
  • Share (iOS and OS X): post content to web services or share content with others
  • Actions (iOS and OS X): app extensions to view or manipulate inside another app
  • Photo Editing (iOS): edit a photo or video in Apple's Photos app with extensions from a third-party apps
  • Finder Sync (OS X): remote file storage in the Finder with support for Finder content annotation
  • Storage Provider (iOS): an interface between files inside an app and other apps on a user's device
  • Custom Keyboard (iOS): system-wide alternative keyboards

Source:

This work introduces Physics-informed State-space neural network Models (PSMs), a novel solution to achieving real-time optimization, flexibility, and fault tolerance in autonomous systems, particularly in transport-dominated systems such as chemical, biomedical, and power plants. Traditional data-driven methods fall short due to a lack of physical constraints like mass conservation; PSMs address this issue by training deep neural networks with sensor data and physics-informing using components' Partial Differential Equations (PDEs), resulting in a physics-constrained, end-to-end differentiable forward dynamics model. Through two in silico experiments - a heated channel and a cooling system loop - we demonstrate that PSMs offer a more accurate approach than purely data-driven models. Beyond accuracy, there are several compelling use cases for PSMs. In this work, we showcase two: the creation of a nonlinear supervisory controller through a sequentially updated state-space representation and the proposal of a diagnostic algorithm using residuals from each of the PDEs. The former demonstrates the ability of PSMs to handle both constant and time-dependent constraints, while the latter illustrates their value in system diagnostics and fault detection. We further posit that PSMs could serve as a foundation for Digital Twins, constantly updated digital representations of physical systems.

Datasets that pair Knowledge Graphs (KG) and text together (KG-T) can be used to train forward and reverse neural models that generate text from KG and vice versa. However models trained on datasets where KG and text pairs are not equivalent can suffer from more hallucination and poorer recall. In this paper, we verify this empirically by generating datasets with different levels of noise and find that noisier datasets do indeed lead to more hallucination. We argue that the ability of forward and reverse models trained on a dataset to cyclically regenerate source KG or text is a proxy for the equivalence between the KG and the text in the dataset. Using cyclic evaluation we find that manually created WebNLG is much better than automatically created TeKGen and T-REx. Guided by these observations, we construct a new, improved dataset called LAGRANGE using heuristics meant to improve equivalence between KG and text and show the impact of each of the heuristics on cyclic evaluation. We also construct two synthetic datasets using large language models (LLMs), and observe that these are conducive to models that perform significantly well on cyclic generation of text, but less so on cyclic generation of KGs, probably because of a lack of a consistent underlying ontology.

Arbitrary Pattern Formation (APF) is a fundamental coordination problem in swarm robotics. It requires a set of autonomous robots (mobile computing units) to form any arbitrary pattern (given as input) starting from any initial pattern. The APF problem is well-studied in both continuous and discrete settings. This work concerns the discrete version of the problem. A set of robots is placed on the nodes of an infinite rectangular grid graph embedded in a euclidean plane. The movements of the robots are restricted to one of the four neighboring grid nodes from its current position. The robots are autonomous, anonymous, identical, and homogeneous, and operate Look-Compute-Move cycles. Here we have considered the classical $\mathcal{OBLOT}$ robot model, i.e., the robots have no persistent memory and no explicit means of communication. The robots have full unobstructed visibility. This work proposes an algorithm that solves the APF problem in a fully asynchronous scheduler under this setting assuming the initial configuration is asymmetric. The considered performance measures of the algorithm are space and number of moves required for the robots. The algorithm is asymptotically move-optimal. A definition of the space-complexity is presented here. We observe an obvious lower bound $\mathcal{D}$ of the space complexity and show that the proposed algorithm has the space complexity $\mathcal{D}+4$. On comparing with previous related works, we show that this is the first proposed algorithm considering $\mathcal{OBLOT}$ robot model that is asymptotically move-optimal and has the least space complexity which is almost optimal.

Graph Convolutional Networks (GCNs) has demonstrated promising results for recommender systems, as they can effectively leverage high-order relationship. However, these methods usually encounter data sparsity issue in real-world scenarios. To address this issue, GCN-based recommendation methods employ contrastive learning to introduce self-supervised signals. Despite their effectiveness, these methods lack consideration of the significant degree disparity between head and tail nodes. This can lead to non-uniform representation distribution, which is a crucial factor for the performance of contrastive learning methods. To tackle the above issue, we propose a novel Long-tail Augmented Graph Contrastive Learning (LAGCL) method for recommendation. Specifically, we introduce a learnable long-tail augmentation approach to enhance tail nodes by supplementing predicted neighbor information, and generate contrastive views based on the resulting augmented graph. To make the data augmentation schema learnable, we design an auto drop module to generate pseudo-tail nodes from head nodes and a knowledge transfer module to reconstruct the head nodes from pseudo-tail nodes. Additionally, we employ generative adversarial networks to ensure that the distribution of the generated tail/head nodes matches that of the original tail/head nodes. Extensive experiments conducted on three benchmark datasets demonstrate the significant improvement in performance of our model over the state-of-the-arts. Further analyses demonstrate the uniformity of learned representations and the superiority of LAGCL on long-tail performance. Code is publicly available at //github.com/im0qianqian/LAGCL

Medical visual question answering (Med-VQA) is a machine learning task that aims to create a system that can answer natural language questions based on given medical images. Although there has been rapid progress on the general VQA task, less progress has been made on Med-VQA due to the lack of large-scale annotated datasets. In this paper, we present domain-specific pre-training strategies, including a novel contrastive learning pretraining method, to mitigate the problem of small datasets for the Med-VQA task. We find that the model benefits from components that use fewer parameters. We also evaluate and discuss the model's visual reasoning using evidence verification techniques. Our proposed model obtained an accuracy of 60% on the VQA-Med 2019 test set, giving comparable results to other state-of-the-art Med-VQA models.

Although in theory we can decide whether a given D-finite function is transcendental, transcendence proofs remain a challenge in practice. Typically, transcendence is certified by checking certain incomplete sufficient conditions. In this paper we propose an additional such condition which catches some cases on which other tests fail.

Large language models with instruction-following abilities have revolutionized the field of artificial intelligence. These models show exceptional generalizability to tackle various real-world tasks through their natural language interfaces. However, their performance heavily relies on high-quality exemplar data, which is often difficult to obtain. This challenge is further exacerbated when it comes to multimodal instruction following. We introduce TextBind, an almost annotation-free framework for empowering larger language models with the multi-turn interleaved multimodal instruction-following capabilities. Our approach requires only image-caption pairs and generates multi-turn multimodal instruction-response conversations from a language model. To accommodate interleaved image-text inputs and outputs, we devise MIM, a language model-centric architecture that seamlessly integrates image encoder and decoder models. We release our dataset, model, and demo to foster future research in the area of multimodal instruction following.

Recent work pre-training Transformers with self-supervised objectives on large text corpora has shown great success when fine-tuned on downstream NLP tasks including text summarization. However, pre-training objectives tailored for abstractive text summarization have not been explored. Furthermore there is a lack of systematic evaluation across diverse domains. In this work, we propose pre-training large Transformer-based encoder-decoder models on massive text corpora with a new self-supervised objective. In PEGASUS, important sentences are removed/masked from an input document and are generated together as one output sequence from the remaining sentences, similar to an extractive summary. We evaluated our best PEGASUS model on 12 downstream summarization tasks spanning news, science, stories, instructions, emails, patents, and legislative bills. Experiments demonstrate it achieves state-of-the-art performance on all 12 downstream datasets measured by ROUGE scores. Our model also shows surprising performance on low-resource summarization, surpassing previous state-of-the-art results on 6 datasets with only 1000 examples. Finally we validated our results using human evaluation and show that our model summaries achieve human performance on multiple datasets.

Although measuring held-out accuracy has been the primary approach to evaluate generalization, it often overestimates the performance of NLP models, while alternative approaches for evaluating models either focus on individual tasks or on specific behaviors. Inspired by principles of behavioral testing in software engineering, we introduce CheckList, a task-agnostic methodology for testing NLP models. CheckList includes a matrix of general linguistic capabilities and test types that facilitate comprehensive test ideation, as well as a software tool to generate a large and diverse number of test cases quickly. We illustrate the utility of CheckList with tests for three tasks, identifying critical failures in both commercial and state-of-art models. In a user study, a team responsible for a commercial sentiment analysis model found new and actionable bugs in an extensively tested model. In another user study, NLP practitioners with CheckList created twice as many tests, and found almost three times as many bugs as users without it.

Video captioning is a challenging task that requires a deep understanding of visual scenes. State-of-the-art methods generate captions using either scene-level or object-level information but without explicitly modeling object interactions. Thus, they often fail to make visually grounded predictions, and are sensitive to spurious correlations. In this paper, we propose a novel spatio-temporal graph model for video captioning that exploits object interactions in space and time. Our model builds interpretable links and is able to provide explicit visual grounding. To avoid unstable performance caused by the variable number of objects, we further propose an object-aware knowledge distillation mechanism, in which local object information is used to regularize global scene features. We demonstrate the efficacy of our approach through extensive experiments on two benchmarks, showing our approach yields competitive performance with interpretable predictions.

北京阿比特科技有限公司