亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This paper proposes the concept of 'research through litigation', where a HCI researcher would bring a claim in the legal system in order to understand judicial attitudes towards technologies. Based on my seven years of experience of bringing legal cases as a computer scientist in Tribunals, I demonstrate the value of this approach by presenting multiple case studies, which illustrate the counter-intuitive approach towards technology taken by Tribunals. This exercise surfaced some serious (and somewhat surreal) concerns with the operation of the justice system, as well as demonstrating how research through litigation changed the law on several occasions. This work therefore makes important methodological and practical contributions to the nascent topic of legal (interaction) design, especially from a methodological standpoint.

相關內容

 法律是國家制定或認可的,由國家強制力保證實施的,以規定權利和義務為內容的具有普遍約束力的社會規范。

We propose a model suggesting that honest-but-rational consensus participants may play timing games, and strategically delay their block proposal to optimize MEV capture, while still ensuring the proposal's timely inclusion in the canonical chain. In this context, ensuring economic fairness among consensus participants is critical to preserving decentralization. We contend that a model grounded in honest-but-rational consensus participation provides a more accurate portrayal of behavior in economically incentivized systems such as blockchain protocols. We empirically investigate timing games on the Ethereum network and demonstrate that while timing games are worth playing, they are not currently being exploited by consensus participants. By quantifying the marginal value of time, we uncover strong evidence pointing towards their future potential, despite the limited exploitation of MEV capture observed at present.

Federated Learning is a distributed machine learning approach that enables geographically distributed data silos to collaboratively learn a joint machine learning model without sharing data. Most of the existing work operates on unstructured data, such as images or text, or on structured data assumed to be consistent across the different sites. However, sites often have different schemata, data formats, data values, and access patterns. The field of data integration has developed many methods to address these challenges, including techniques for data exchange and query rewriting using declarative schema mappings, and for entity linkage. Therefore, we propose an architectural vision for an end-to-end Federated Learning and Integration system, incorporating the critical steps of data harmonization and data imputation, to spur further research on the intersection of data management information systems and machine learning.

Cross-silo federated learning (FL) enables multiple clients to collaboratively train a machine learning model without sharing training data, but privacy in FL remains a major challenge. Techniques using homomorphic encryption (HE) have been designed to solve this but bring their own challenges. Many techniques using single-key HE (SKHE) require clients to fully trust each other to prevent privacy disclosure between clients. However, fully trusted clients are hard to ensure in practice. Other techniques using multi-key HE (MKHE) aim to protect privacy from untrusted clients but lead to the disclosure of training results in public channels by untrusted third parties, e.g., the public cloud server. Besides, MKHE has higher computation and communication complexity compared with SKHE. We present a new FL protocol ESAFL that leverages a novel efficient and secure additively HE (ESHE) based on the hard problem of ring learning with errors. ESAFL can ensure the security of training data between untrusted clients and protect the training results against untrusted third parties. In addition, theoretical analyses present that ESAFL outperforms current techniques using MKHE in computation and communication, and intensive experiments show that ESAFL achieves approximate 204 times-953 times and 11 times-14 times training speedup while reducing the communication burden by 77 times-109 times and 1.25 times-2 times compared with the state-of-the-art FL models using SKHE.

Solving the problem of cooperation is of fundamental importance to the creation and maintenance of functional societies, with examples of cooperative dilemmas ranging from navigating busy road junctions to negotiating carbon reduction treaties. As the use of AI becomes more pervasive throughout society, the need for socially intelligent agents that are able to navigate these complex cooperative dilemmas is becoming increasingly evident. In the natural world, direct punishment is an ubiquitous social mechanism that has been shown to benefit the emergence of cooperation within populations. However no prior work has investigated its impact on the development of cooperation within populations of artificial learning agents experiencing social dilemmas. Additionally, within natural populations the use of any form of punishment is strongly coupled with the related social mechanisms of partner selection and reputation. However, no previous work has considered the impact of combining multiple social mechanisms on the emergence of cooperation in multi-agent systems. Therefore, in this paper we present a comprehensive analysis of the behaviours and learning dynamics associated with direct punishment in multi-agent reinforcement learning systems and how it compares to third-party punishment, when both are combined with the related social mechanisms of partner selection and reputation. We provide an extensive and systematic evaluation of the impact of these key mechanisms on the dynamics of the strategies learned by agents. Finally, we discuss the implications of the use of these mechanisms on the design of cooperative AI systems.

The increasing popularity of large language models (LLMs) such as ChatGPT has led to growing concerns about their safety, security risks, and ethical implications. This paper aims to provide an overview of the different types of security risks associated with ChatGPT, including malicious text and code generation, private data disclosure, fraudulent services, information gathering, and producing unethical content. We present an empirical study examining the effectiveness of ChatGPT's content filters and explore potential ways to bypass these safeguards, demonstrating the ethical implications and security risks that persist in LLMs even when protections are in place. Based on a qualitative analysis of the security implications, we discuss potential strategies to mitigate these risks and inform researchers, policymakers, and industry professionals about the complex security challenges posed by LLMs like ChatGPT. This study contributes to the ongoing discussion on the ethical and security implications of LLMs, underscoring the need for continued research in this area.

In order to advance academic research, it is important to assess and evaluate the academic influence of researchers and the findings they produce. Citation metrics are universally used methods to evaluate researchers. Amongst the several variations of citation metrics, the h-index proposed by Hirsch has become the leading measure. Recent work shows that h-index is not an effective measure to determine scientific impact - due to changing authorship patterns. This can be mitigated by using h-index of a paper to compute h- index of an author. We show that using fractional allocation of h-index gives better results. In this work, we reapply two indices based on the h-index of a single paper. The indices are referred to as: hp-index and hp-frac-index. We run large-scale experiments in three different fields with about a million publications and 3,000 authors. We also compare h-index of a paper with nine h-index like metrics. Our experiments show that hp-frac-index provides a unique ranking when compared to h-index. It also performs better than h-index in providing higher ranks to the awarded researcher.

In practically every industry today, artificial intelligence is one of the most effective ways for machines to assist humans. Since its inception, a large number of researchers throughout the globe have been pioneering the application of artificial intelligence in medicine. Although artificial intelligence may seem to be a 21st-century concept, Alan Turing pioneered the first foundation concept in the 1940s. Artificial intelligence in medicine has a huge variety of applications that researchers are continually exploring. The tremendous increase in computer and human resources has hastened progress in the 21st century, and it will continue to do so for many years to come. This review of the literature will highlight the emerging field of artificial intelligence in medicine and its current level of development.

Fast developing artificial intelligence (AI) technology has enabled various applied systems deployed in the real world, impacting people's everyday lives. However, many current AI systems were found vulnerable to imperceptible attacks, biased against underrepresented groups, lacking in user privacy protection, etc., which not only degrades user experience but erodes the society's trust in all AI systems. In this review, we strive to provide AI practitioners a comprehensive guide towards building trustworthy AI systems. We first introduce the theoretical framework of important aspects of AI trustworthiness, including robustness, generalization, explainability, transparency, reproducibility, fairness, privacy preservation, alignment with human values, and accountability. We then survey leading approaches in these aspects in the industry. To unify the current fragmented approaches towards trustworthy AI, we propose a systematic approach that considers the entire lifecycle of AI systems, ranging from data acquisition to model development, to development and deployment, finally to continuous monitoring and governance. In this framework, we offer concrete action items to practitioners and societal stakeholders (e.g., researchers and regulators) to improve AI trustworthiness. Finally, we identify key opportunities and challenges in the future development of trustworthy AI systems, where we identify the need for paradigm shift towards comprehensive trustworthy AI systems.

This paper surveys the field of transfer learning in the problem setting of Reinforcement Learning (RL). RL has been the key solution to sequential decision-making problems. Along with the fast advance of RL in various domains. including robotics and game-playing, transfer learning arises as an important technique to assist RL by leveraging and transferring external expertise to boost the learning process. In this survey, we review the central issues of transfer learning in the RL domain, providing a systematic categorization of its state-of-the-art techniques. We analyze their goals, methodologies, applications, and the RL frameworks under which these transfer learning techniques would be approachable. We discuss the relationship between transfer learning and other relevant topics from an RL perspective and also explore the potential challenges as well as future development directions for transfer learning in RL.

Reinforcement learning (RL) is a popular paradigm for addressing sequential decision tasks in which the agent has only limited environmental feedback. Despite many advances over the past three decades, learning in many domains still requires a large amount of interaction with the environment, which can be prohibitively expensive in realistic scenarios. To address this problem, transfer learning has been applied to reinforcement learning such that experience gained in one task can be leveraged when starting to learn the next, harder task. More recently, several lines of research have explored how tasks, or data samples themselves, can be sequenced into a curriculum for the purpose of learning a problem that may otherwise be too difficult to learn from scratch. In this article, we present a framework for curriculum learning (CL) in reinforcement learning, and use it to survey and classify existing CL methods in terms of their assumptions, capabilities, and goals. Finally, we use our framework to find open problems and suggest directions for future RL curriculum learning research.

北京阿比特科技有限公司