{mayi_des}

亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

As an emerging task that integrates perception and reasoning, topology reasoning in autonomous driving scenes has recently garnered widespread attention. However, existing work often emphasizes "perception over reasoning": they typically boost reasoning performance by enhancing the perception of lanes and directly adopt MLP to learn lane topology from lane query. This paradigm overlooks the geometric features intrinsic to the lanes themselves and are prone to being influenced by inherent endpoint shifts in lane detection. To tackle this issue, we propose an interpretable method for lane topology reasoning based on lane geometric distance and lane query similarity, named TopoLogic. This method mitigates the impact of endpoint shifts in geometric space, and introduces explicit similarity calculation in semantic space as a complement. By integrating results from both spaces, our methods provides more comprehensive information for lane topology. Ultimately, our approach significantly outperforms the existing state-of-the-art methods on the mainstream benchmark OpenLane-V2 (23.9 v.s. 10.9 in TOP$_{ll}$ and 44.1 v.s. 39.8 in OLS on subset_A. Additionally, our proposed geometric distance topology reasoning method can be incorporated into well-trained models without re-training, significantly boost the performance of lane topology reasoning. The code is released at //github.com/Franpin/TopoLogic.

相關內容

Against the backdrop of advancing science and technology, autonomous vehicle technology has emerged as a focal point of intense scrutiny within the academic community. Nevertheless, the challenge persists in guaranteeing the safety and reliability of this technology when navigating intricate scenarios. While a substantial portion of autonomous driving research is dedicated to testing in open-air environments, such as urban roads and highways, where the myriad variables at play are meticulously examined, enclosed indoor spaces like underground parking lots have, to a significant extent, been overlooked in the scholarly discourse. This discrepancy highlights a gap in derstanding the unique challenges these confined settings pose for autonomous navigation systems. This study tackles indoor autonomous driving, particularly in overlooked spaces like underground parking lots. Using CARLA's simulation platform, a realistic parking model is created for data gathering. An occupancy grid network then processes this data to predict vehicle paths and obstacles, enhancing the system's perception in complex indoor environments. Ultimately, this strategy improves safety in autonomous parking operations. The paper meticulously evaluates the model's predictive capabilities, validating its efficacy in the context of underground parking. Our findings confirm that the proposed strategy successfully enhances autonomous vehicle performance in these complex indoor settings. It equips autonomous systems with improved adaptation to underground lots, reinforcing safety measures and dependability. This work paves the way for future advancements and applications by addressing the research shortfall concerning indoor parking environments, serving as a pivotal reference point.

Sequence parallelism (SP), which divides the sequence dimension of input tensors across multiple computational devices, is becoming key to unlocking the long-context capabilities of generative AI models. This paper investigates the state-of-the-art SP approaches, i.e. DeepSpeed-Ulysses and Ring-Attention, and proposes a unified SP approach, which is more robust to transformer model architectures and network hardware topology. This paper compares the communication and memory cost of SP and existing parallelism, including data/tensor/zero/pipeline parallelism, and discusses the best practices for designing hybrid 4D parallelism involving SP. We achieved 47% MFU on two 8xA800 nodes using SP for the LLAMA3-8B model training using sequence length 208K. Our code is publicly available at //github.com/feifeibear/long-context-attention.

The conditional diffusion model has been demonstrated as an efficient tool for learning robot policies, owing to its advancement to accurately model the conditional distribution of policies. The intricate nature of real-world scenarios, characterized by dynamic obstacles and maze-like structures, underscores the complexity of robot local navigation decision-making as a conditional distribution problem. Nevertheless, leveraging the diffusion model for robot local navigation is not trivial and encounters several under-explored challenges: (1) Data Urgency. The complex conditional distribution in local navigation needs training data to include diverse policy in diverse real-world scenarios; (2) Myopic Observation. Due to the diversity of the perception scenarios, diffusion decisions based on the local perspective of robots may prove suboptimal for completing the entire task, as they often lack foresight. In certain scenarios requiring detours, the robot may become trapped. To address these issues, our approach begins with an exploration of a diverse data generation mechanism that encompasses multiple agents exhibiting distinct preferences through target selection informed by integrated global-local insights. Then, based on this diverse training data, a diffusion agent is obtained, capable of excellent collision avoidance in diverse scenarios. Subsequently, we augment our Local Diffusion Planner, also known as LDP by incorporating global observations in a lightweight manner. This enhancement broadens the observational scope of LDP, effectively mitigating the risk of becoming ensnared in local optima and promoting more robust navigational decisions.

Trajectory prediction in autonomous driving relies on accurate representation of all relevant contexts of the driving scene, including traffic participants, road topology, traffic signs, as well as their semantic relations to each other. Despite increased attention to this issue, most approaches in trajectory prediction do not consider all of these factors sufficiently. We present SemanticFormer, an approach for predicting multimodal trajectories by reasoning over a semantic traffic scene graph using a hybrid approach. It utilizes high-level information in the form of meta-paths, i.e. trajectories on which an agent is allowed to drive from a knowledge graph which is then processed by a novel pipeline based on multiple attention mechanisms to predict accurate trajectories. SemanticFormer comprises a hierarchical heterogeneous graph encoder to capture spatio-temporal and relational information across agents as well as between agents and road elements. Further, it includes a predictor to fuse different encodings and decode trajectories with probabilities. Finally, a refinement module assesses permitted meta-paths of trajectories and speed profiles to obtain final predicted trajectories. Evaluation of the nuScenes benchmark demonstrates improved performance compared to several SOTA methods. In addition, we demonstrate that our knowledge graph can be easily added to two graph-based existing SOTA methods, namely VectorNet and Laformer, replacing their original homogeneous graphs. The evaluation results suggest that by adding our knowledge graph the performance of the original methods is enhanced by 5% and 4%, respectively.

Bilevel optimization has shown its utility across various machine learning settings, yet most algorithms in practice require second-order information, making it challenging to scale them up. Only recently, a paradigm of first-order algorithms emerged, capable of effectively addressing bilevel optimization problems. Nevertheless, the practical efficiency of this paradigm remains unverified, particularly in the context of large language models (LLMs). This paper introduces the first scalable instantiation of this paradigm called ScaleBiO, focusing on bilevel optimization for large-scale LLM data reweighting. By combining with a recently proposed memory-efficient training technique called LISA, our novel algorithm allows the paradigm to scale to 34-billion-parameter LLMs on eight A40 GPUs, marking the first successful application of bilevel optimization under practical scenarios for large-sized LLMs. Empirically, extensive experiments on data reweighting verify the effectiveness of ScaleBiO for different-scaled models, including GPT-2, LLaMA-3-8B, GPT-NeoX-20B, and Yi-34B, where bilevel optimization succeeds in filtering irrelevant data samples and selecting informative samples. Theoretically, ScaleBiO ensures the optimality of the learned data weights, along with a convergence guarantee matching the conventional first-order bilevel optimization paradigm on smooth and strongly convex objectives.

Measuring an overall autonomy score for a robotic system requires the combination of a set of relevant aspects and features of the system that might be measured in different units, qualitative, and/or discordant. In this paper, we build upon an existing non-contextual autonomy framework that measures and combines the Autonomy Level and the Component Performance of a system as overall autonomy score. We examine several methods of combining features, showing how some methods find different rankings of the same data, and we employ the weighted product method to resolve this issue. Furthermore, we introduce the non-contextual autonomy coordinate and represent the overall autonomy of a system with an autonomy distance. We apply our method to a set of seven Unmanned Aerial Systems (UAS) and obtain their absolute autonomy score as well as their relative score with respect to the best system.

In commercial autonomous service robots with several form factors, simultaneous localization and mapping (SLAM) is an essential technology for providing proper services such as cleaning and guidance. Such robots require SLAM algorithms suitable for specific applications and environments. Hence, several SLAM frameworks have been proposed to address various requirements in the past decade. However, we have encountered challenges in implementing recent innovative frameworks when handling service robots with low-end processors and insufficient sensor data, such as low-resolution 2D LiDAR sensors. Specifically, regarding commercial robots, consistent performance in different hardware configurations and environments is more crucial than the performance dedicated to specific sensors or environments. Therefore, we propose a) a multi-stage %hierarchical approach for global pose estimation in embedded systems; b) a graph generation method with zero constraints for synchronized sensors; and c) a robust and memory-efficient method for long-term pose-graph optimization. As verified in in-home and large-scale indoor environments, the proposed method yields consistent global pose estimation for services in commercial fields. Furthermore, the proposed method exhibits potential commercial viability considering the consistent performance verified via mass production and long-term (> 5 years) operation.

With the advent of automation, many manufacturing industries have transitioned to data-centric methodologies, giving rise to an unprecedented influx of data during the manufacturing process. This data has become instrumental in analyzing the quality of manufacturing process and equipment. Engineers and data analysts, in particular, require extensive time-series data for seasonal cycle analysis. However, due to computational resource constraints, they are often limited to querying short-term data multiple times or resorting to the use of summarized data in which key patterns may be overlooked. This study proposes a novel solution to overcome these limitations; the advanced resolution-based pixel preemption data filtering (AR-PPF) algorithm. This technology allows for efficient visualization of time-series charts over long periods while significantly reducing the time required to retrieve data. We also demonstrates how this approach not only enhances the efficiency of data analysis but also ensures that key feature is not lost, thereby providing a more accurate and comprehensive understanding of the data.

In pace with developments in the research field of artificial intelligence, knowledge graphs (KGs) have attracted a surge of interest from both academia and industry. As a representation of semantic relations between entities, KGs have proven to be particularly relevant for natural language processing (NLP), experiencing a rapid spread and wide adoption within recent years. Given the increasing amount of research work in this area, several KG-related approaches have been surveyed in the NLP research community. However, a comprehensive study that categorizes established topics and reviews the maturity of individual research streams remains absent to this day. Contributing to closing this gap, we systematically analyzed 507 papers from the literature on KGs in NLP. Our survey encompasses a multifaceted review of tasks, research types, and contributions. As a result, we present a structured overview of the research landscape, provide a taxonomy of tasks, summarize our findings, and highlight directions for future work.

Multi-modal fusion is a fundamental task for the perception of an autonomous driving system, which has recently intrigued many researchers. However, achieving a rather good performance is not an easy task due to the noisy raw data, underutilized information, and the misalignment of multi-modal sensors. In this paper, we provide a literature review of the existing multi-modal-based methods for perception tasks in autonomous driving. Generally, we make a detailed analysis including over 50 papers leveraging perception sensors including LiDAR and camera trying to solve object detection and semantic segmentation tasks. Different from traditional fusion methodology for categorizing fusion models, we propose an innovative way that divides them into two major classes, four minor classes by a more reasonable taxonomy in the view of the fusion stage. Moreover, we dive deep into the current fusion methods, focusing on the remaining problems and open-up discussions on the potential research opportunities. In conclusion, what we expect to do in this paper is to present a new taxonomy of multi-modal fusion methods for the autonomous driving perception tasks and provoke thoughts of the fusion-based techniques in the future.

北京阿比特科技有限公司
{ll}$ and 44.1 v.s. 39.8 in OLS on subset_A. Additionally, our proposed geometric distance topology reasoning method can be incorporated into well-trained models without re-training, significantly boost the performance of lane topology reasoning. The code is released at //github.com/Franpin/TopoLogic. ">

亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

As an emerging task that integrates perception and reasoning, topology reasoning in autonomous driving scenes has recently garnered widespread attention. However, existing work often emphasizes "perception over reasoning": they typically boost reasoning performance by enhancing the perception of lanes and directly adopt MLP to learn lane topology from lane query. This paradigm overlooks the geometric features intrinsic to the lanes themselves and are prone to being influenced by inherent endpoint shifts in lane detection. To tackle this issue, we propose an interpretable method for lane topology reasoning based on lane geometric distance and lane query similarity, named TopoLogic. This method mitigates the impact of endpoint shifts in geometric space, and introduces explicit similarity calculation in semantic space as a complement. By integrating results from both spaces, our methods provides more comprehensive information for lane topology. Ultimately, our approach significantly outperforms the existing state-of-the-art methods on the mainstream benchmark OpenLane-V2 (23.9 v.s. 10.9 in TOP$_{ll}$ and 44.1 v.s. 39.8 in OLS on subset_A. Additionally, our proposed geometric distance topology reasoning method can be incorporated into well-trained models without re-training, significantly boost the performance of lane topology reasoning. The code is released at //github.com/Franpin/TopoLogic.

相關內容

Against the backdrop of advancing science and technology, autonomous vehicle technology has emerged as a focal point of intense scrutiny within the academic community. Nevertheless, the challenge persists in guaranteeing the safety and reliability of this technology when navigating intricate scenarios. While a substantial portion of autonomous driving research is dedicated to testing in open-air environments, such as urban roads and highways, where the myriad variables at play are meticulously examined, enclosed indoor spaces like underground parking lots have, to a significant extent, been overlooked in the scholarly discourse. This discrepancy highlights a gap in derstanding the unique challenges these confined settings pose for autonomous navigation systems. This study tackles indoor autonomous driving, particularly in overlooked spaces like underground parking lots. Using CARLA's simulation platform, a realistic parking model is created for data gathering. An occupancy grid network then processes this data to predict vehicle paths and obstacles, enhancing the system's perception in complex indoor environments. Ultimately, this strategy improves safety in autonomous parking operations. The paper meticulously evaluates the model's predictive capabilities, validating its efficacy in the context of underground parking. Our findings confirm that the proposed strategy successfully enhances autonomous vehicle performance in these complex indoor settings. It equips autonomous systems with improved adaptation to underground lots, reinforcing safety measures and dependability. This work paves the way for future advancements and applications by addressing the research shortfall concerning indoor parking environments, serving as a pivotal reference point.

Sequence parallelism (SP), which divides the sequence dimension of input tensors across multiple computational devices, is becoming key to unlocking the long-context capabilities of generative AI models. This paper investigates the state-of-the-art SP approaches, i.e. DeepSpeed-Ulysses and Ring-Attention, and proposes a unified SP approach, which is more robust to transformer model architectures and network hardware topology. This paper compares the communication and memory cost of SP and existing parallelism, including data/tensor/zero/pipeline parallelism, and discusses the best practices for designing hybrid 4D parallelism involving SP. We achieved 47% MFU on two 8xA800 nodes using SP for the LLAMA3-8B model training using sequence length 208K. Our code is publicly available at //github.com/feifeibear/long-context-attention.

The conditional diffusion model has been demonstrated as an efficient tool for learning robot policies, owing to its advancement to accurately model the conditional distribution of policies. The intricate nature of real-world scenarios, characterized by dynamic obstacles and maze-like structures, underscores the complexity of robot local navigation decision-making as a conditional distribution problem. Nevertheless, leveraging the diffusion model for robot local navigation is not trivial and encounters several under-explored challenges: (1) Data Urgency. The complex conditional distribution in local navigation needs training data to include diverse policy in diverse real-world scenarios; (2) Myopic Observation. Due to the diversity of the perception scenarios, diffusion decisions based on the local perspective of robots may prove suboptimal for completing the entire task, as they often lack foresight. In certain scenarios requiring detours, the robot may become trapped. To address these issues, our approach begins with an exploration of a diverse data generation mechanism that encompasses multiple agents exhibiting distinct preferences through target selection informed by integrated global-local insights. Then, based on this diverse training data, a diffusion agent is obtained, capable of excellent collision avoidance in diverse scenarios. Subsequently, we augment our Local Diffusion Planner, also known as LDP by incorporating global observations in a lightweight manner. This enhancement broadens the observational scope of LDP, effectively mitigating the risk of becoming ensnared in local optima and promoting more robust navigational decisions.

Trajectory prediction in autonomous driving relies on accurate representation of all relevant contexts of the driving scene, including traffic participants, road topology, traffic signs, as well as their semantic relations to each other. Despite increased attention to this issue, most approaches in trajectory prediction do not consider all of these factors sufficiently. We present SemanticFormer, an approach for predicting multimodal trajectories by reasoning over a semantic traffic scene graph using a hybrid approach. It utilizes high-level information in the form of meta-paths, i.e. trajectories on which an agent is allowed to drive from a knowledge graph which is then processed by a novel pipeline based on multiple attention mechanisms to predict accurate trajectories. SemanticFormer comprises a hierarchical heterogeneous graph encoder to capture spatio-temporal and relational information across agents as well as between agents and road elements. Further, it includes a predictor to fuse different encodings and decode trajectories with probabilities. Finally, a refinement module assesses permitted meta-paths of trajectories and speed profiles to obtain final predicted trajectories. Evaluation of the nuScenes benchmark demonstrates improved performance compared to several SOTA methods. In addition, we demonstrate that our knowledge graph can be easily added to two graph-based existing SOTA methods, namely VectorNet and Laformer, replacing their original homogeneous graphs. The evaluation results suggest that by adding our knowledge graph the performance of the original methods is enhanced by 5% and 4%, respectively.

Bilevel optimization has shown its utility across various machine learning settings, yet most algorithms in practice require second-order information, making it challenging to scale them up. Only recently, a paradigm of first-order algorithms emerged, capable of effectively addressing bilevel optimization problems. Nevertheless, the practical efficiency of this paradigm remains unverified, particularly in the context of large language models (LLMs). This paper introduces the first scalable instantiation of this paradigm called ScaleBiO, focusing on bilevel optimization for large-scale LLM data reweighting. By combining with a recently proposed memory-efficient training technique called LISA, our novel algorithm allows the paradigm to scale to 34-billion-parameter LLMs on eight A40 GPUs, marking the first successful application of bilevel optimization under practical scenarios for large-sized LLMs. Empirically, extensive experiments on data reweighting verify the effectiveness of ScaleBiO for different-scaled models, including GPT-2, LLaMA-3-8B, GPT-NeoX-20B, and Yi-34B, where bilevel optimization succeeds in filtering irrelevant data samples and selecting informative samples. Theoretically, ScaleBiO ensures the optimality of the learned data weights, along with a convergence guarantee matching the conventional first-order bilevel optimization paradigm on smooth and strongly convex objectives.

Measuring an overall autonomy score for a robotic system requires the combination of a set of relevant aspects and features of the system that might be measured in different units, qualitative, and/or discordant. In this paper, we build upon an existing non-contextual autonomy framework that measures and combines the Autonomy Level and the Component Performance of a system as overall autonomy score. We examine several methods of combining features, showing how some methods find different rankings of the same data, and we employ the weighted product method to resolve this issue. Furthermore, we introduce the non-contextual autonomy coordinate and represent the overall autonomy of a system with an autonomy distance. We apply our method to a set of seven Unmanned Aerial Systems (UAS) and obtain their absolute autonomy score as well as their relative score with respect to the best system.

In commercial autonomous service robots with several form factors, simultaneous localization and mapping (SLAM) is an essential technology for providing proper services such as cleaning and guidance. Such robots require SLAM algorithms suitable for specific applications and environments. Hence, several SLAM frameworks have been proposed to address various requirements in the past decade. However, we have encountered challenges in implementing recent innovative frameworks when handling service robots with low-end processors and insufficient sensor data, such as low-resolution 2D LiDAR sensors. Specifically, regarding commercial robots, consistent performance in different hardware configurations and environments is more crucial than the performance dedicated to specific sensors or environments. Therefore, we propose a) a multi-stage %hierarchical approach for global pose estimation in embedded systems; b) a graph generation method with zero constraints for synchronized sensors; and c) a robust and memory-efficient method for long-term pose-graph optimization. As verified in in-home and large-scale indoor environments, the proposed method yields consistent global pose estimation for services in commercial fields. Furthermore, the proposed method exhibits potential commercial viability considering the consistent performance verified via mass production and long-term (> 5 years) operation.

With the advent of automation, many manufacturing industries have transitioned to data-centric methodologies, giving rise to an unprecedented influx of data during the manufacturing process. This data has become instrumental in analyzing the quality of manufacturing process and equipment. Engineers and data analysts, in particular, require extensive time-series data for seasonal cycle analysis. However, due to computational resource constraints, they are often limited to querying short-term data multiple times or resorting to the use of summarized data in which key patterns may be overlooked. This study proposes a novel solution to overcome these limitations; the advanced resolution-based pixel preemption data filtering (AR-PPF) algorithm. This technology allows for efficient visualization of time-series charts over long periods while significantly reducing the time required to retrieve data. We also demonstrates how this approach not only enhances the efficiency of data analysis but also ensures that key feature is not lost, thereby providing a more accurate and comprehensive understanding of the data.

In pace with developments in the research field of artificial intelligence, knowledge graphs (KGs) have attracted a surge of interest from both academia and industry. As a representation of semantic relations between entities, KGs have proven to be particularly relevant for natural language processing (NLP), experiencing a rapid spread and wide adoption within recent years. Given the increasing amount of research work in this area, several KG-related approaches have been surveyed in the NLP research community. However, a comprehensive study that categorizes established topics and reviews the maturity of individual research streams remains absent to this day. Contributing to closing this gap, we systematically analyzed 507 papers from the literature on KGs in NLP. Our survey encompasses a multifaceted review of tasks, research types, and contributions. As a result, we present a structured overview of the research landscape, provide a taxonomy of tasks, summarize our findings, and highlight directions for future work.

Multi-modal fusion is a fundamental task for the perception of an autonomous driving system, which has recently intrigued many researchers. However, achieving a rather good performance is not an easy task due to the noisy raw data, underutilized information, and the misalignment of multi-modal sensors. In this paper, we provide a literature review of the existing multi-modal-based methods for perception tasks in autonomous driving. Generally, we make a detailed analysis including over 50 papers leveraging perception sensors including LiDAR and camera trying to solve object detection and semantic segmentation tasks. Different from traditional fusion methodology for categorizing fusion models, we propose an innovative way that divides them into two major classes, four minor classes by a more reasonable taxonomy in the view of the fusion stage. Moreover, we dive deep into the current fusion methods, focusing on the remaining problems and open-up discussions on the potential research opportunities. In conclusion, what we expect to do in this paper is to present a new taxonomy of multi-modal fusion methods for the autonomous driving perception tasks and provoke thoughts of the fusion-based techniques in the future.

北京阿比特科技有限公司