亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Atrial fibrillation (AF) is one of the most common arrhythmias with challenging public health implications. Therefore, automatic detection of AF episodes on ECG is one of the essential tasks in biomedical engineering. In this paper, we applied the recently introduced method of compressor-based text classification with gzip algorithm for AF detection (binary classification between heart rhythms). We investigated the normalized compression distance applied to RR-interval and $\Delta$RR-interval sequences ($\Delta$RR-interval is the difference between subsequent RR-intervals). Here, the configuration of the k-nearest neighbour classifier, an optimal window length, and the choice of data types for compression were analyzed. We achieved good classification results while learning on the full MIT-BIH Atrial Fibrillation database, close to the best specialized AF detection algorithms (avg. sensitivity = 97.1\%, avg. specificity = 91.7\%, best sensitivity of 99.8\%, best specificity of 97.6\% with fivefold cross-validation). In addition, we evaluated the classification performance under the few-shot learning setting. Our results suggest that gzip compression-based classification, originally proposed for texts, is suitable for biomedical data and quantized continuous stochastic sequences in general.

相關內容

Policy gradient (PG) is widely used in reinforcement learning due to its scalability and good performance. In recent years, several variance-reduced PG methods have been proposed with a theoretical guarantee of converging to an approximate first-order stationary point (FOSP) with the sample complexity of $O(\epsilon^{-3})$. However, FOSPs could be bad local optima or saddle points. Moreover, these algorithms often use importance sampling (IS) weights which could impair the statistical effectiveness of variance reduction. In this paper, we propose a variance-reduced second-order method that uses second-order information in the form of Hessian vector products (HVP) and converges to an approximate second-order stationary point (SOSP) with sample complexity of $\tilde{O}(\epsilon^{-3})$. This rate improves the best-known sample complexity for achieving approximate SOSPs by a factor of $O(\epsilon^{-0.5})$. Moreover, the proposed variance reduction technique bypasses IS weights by using HVP terms. Our experimental results show that the proposed algorithm outperforms the state of the art and is more robust to changes in random seeds.

Neural networks build the foundation of several intelligent systems, which, however, are known to be easily fooled by adversarial examples. Recent advances made these attacks possible even in air-gapped scenarios, where the autonomous system observes its surroundings by, e.g., a camera. We extend these ideas in our research and evaluate the robustness of multi-camera setups against such physical adversarial examples. This scenario becomes ever more important with the rise in popularity of autonomous vehicles, which fuse the information of several cameras for their driving decision. While we find that multi-camera setups provide some robustness towards past attack methods, we see that this advantage reduces when optimizing on multiple perspectives at once. We propose a novel attack method that we call Transcender-MC, where we incorporate online 3D renderings and perspective projections in the training process. Moreover, we motivate that certain data augmentation techniques can facilitate the generation of successful adversarial examples even further. Transcender-MC is 11% more effective in successfully attacking multi-camera setups than state-of-the-art methods. Our findings offer valuable insights regarding the resilience of object detection in a setup with multiple cameras and motivate the need of developing adequate defense mechanisms against them.

One core capability of Large Language Models (LLMs) is to follow natural language instructions. However, the evaluation of such abilities is not standardized: Human evaluations are expensive, slow, and not objectively reproducible, while LLM-based auto-evaluation is potentially biased or limited by the ability of the evaluator LLM. To overcome these issues, we introduce Instruction-Following Eval (IFEval) for large language models. IFEval is a straightforward and easy-to-reproduce evaluation benchmark. It focuses on a set of "verifiable instructions" such as "write in more than 400 words" and "mention the keyword of AI at least 3 times". We identified 25 types of those verifiable instructions and constructed around 500 prompts, with each prompt containing one or more verifiable instructions. We show evaluation results of two widely available LLMs on the market. Our code and data can be found at //github.com/google-research/google-research/tree/master/instruction_following_eval

Existing generalization bounds fail to explain crucial factors that drive the generalization of modern neural networks. Since such bounds often hold uniformly over all parameters, they suffer from over-parametrization and fail to account for the strong inductive bias of initialization and stochastic gradient descent. As an alternative, we propose a novel optimal transport interpretation of the generalization problem. This allows us to derive instance-dependent generalization bounds that depend on the local Lipschitz regularity of the learned prediction function in the data space. Therefore, our bounds are agnostic to the parametrization of the model and work well when the number of training samples is much smaller than the number of parameters. With small modifications, our approach yields accelerated rates for data on low-dimensional manifolds and guarantees under distribution shifts. We empirically analyze our generalization bounds for neural networks, showing that the bound values are meaningful and capture the effect of popular regularization methods during training.

Accurate estimation of conditional average treatment effects (CATE) is at the core of personalized decision making. While there is a plethora of models for CATE estimation, model selection is a nontrivial task, due to the fundamental problem of causal inference. Recent empirical work provides evidence in favor of proxy loss metrics with double robust properties and in favor of model ensembling. However, theoretical understanding is lacking. Direct application of prior theoretical work leads to suboptimal oracle model selection rates due to the non-convexity of the model selection problem. We provide regret rates for the major existing CATE ensembling approaches and propose a new CATE model ensembling approach based on Q-aggregation using the doubly robust loss. Our main result shows that causal Q-aggregation achieves statistically optimal oracle model selection regret rates of $\frac{\log(M)}{n}$ (with $M$ models and $n$ samples), with the addition of higher-order estimation error terms related to products of errors in the nuisance functions. Crucially, our regret rate does not require that any of the candidate CATE models be close to the truth. We validate our new method on many semi-synthetic datasets and also provide extensions of our work to CATE model selection with instrumental variables and unobserved confounding.

Currently, there is a lot of research in the field of neural networks for non-life insurance pricing. The usual goal is to improve the predictive power via neural networks while building upon the generalized linear model, which is the current industry standard. Our paper contributes to this current journey via novel methods to enhance actuarial non-life models with transformer models for tabular data. We build here upon the foundation laid out by the combined actuarial neural network as well as the localGLMnet and enhance those models via the feature tokenizer transformer. The manuscript demonstrates the performance of the proposed methods on a real-world claim frequency dataset and compares them with several benchmark models such as generalized linear models, feed-forward neural networks, combined actuarial neural networks, LocalGLMnet, and pure feature tokenizer transformer. The paper shows that the new methods can achieve better results than the benchmark models while preserving certain generalized linear model advantages. The paper also discusses the practical implications and challenges of applying transformer models in actuarial settings.

To facilitate efficient learning, policy gradient approaches to deep reinforcement learning (RL) are typically paired with variance reduction measures and strategies for making large but safe policy changes based on a batch of experiences. Natural policy gradient methods, including Trust Region Policy Optimization (TRPO), seek to produce monotonic improvement through bounded changes in policy outputs. Proximal Policy Optimization (PPO) is a commonly used, first-order algorithm that instead uses loss clipping to take multiple safe optimization steps per batch of data, replacing the bound on the single step of TRPO with regularization on multiple steps. In this work, we find that the performance of PPO, when applied to continuous action spaces, may be consistently improved through a simple change in objective. Instead of the importance sampling objective of PPO, we instead recommend a basic policy gradient, clipped in an equivalent fashion. While both objectives produce biased gradient estimates with respect to the RL objective, they also both display significantly reduced variance compared to the unbiased off-policy policy gradient. Additionally, we show that (1) the clipped-objective policy gradient (COPG) objective is on average "pessimistic" compared to both the PPO objective and (2) this pessimism promotes enhanced exploration. As a result, we empirically observe that COPG produces improved learning compared to PPO in single-task, constrained, and multi-task learning, without adding significant computational cost or complexity. Compared to TRPO, the COPG approach is seen to offer comparable or superior performance, while retaining the simplicity of a first-order method.

It has been shown that deep neural networks are prone to overfitting on biased training data. Towards addressing this issue, meta-learning employs a meta model for correcting the training bias. Despite the promising performances, super slow training is currently the bottleneck in the meta learning approaches. In this paper, we introduce a novel Faster Meta Update Strategy (FaMUS) to replace the most expensive step in the meta gradient computation with a faster layer-wise approximation. We empirically find that FaMUS yields not only a reasonably accurate but also a low-variance approximation of the meta gradient. We conduct extensive experiments to verify the proposed method on two tasks. We show our method is able to save two-thirds of the training time while still maintaining the comparable or achieving even better generalization performance. In particular, our method achieves the state-of-the-art performance on both synthetic and realistic noisy labels, and obtains promising performance on long-tailed recognition on standard benchmarks.

Representation learning on a knowledge graph (KG) is to embed entities and relations of a KG into low-dimensional continuous vector spaces. Early KG embedding methods only pay attention to structured information encoded in triples, which would cause limited performance due to the structure sparseness of KGs. Some recent attempts consider paths information to expand the structure of KGs but lack explainability in the process of obtaining the path representations. In this paper, we propose a novel Rule and Path-based Joint Embedding (RPJE) scheme, which takes full advantage of the explainability and accuracy of logic rules, the generalization of KG embedding as well as the supplementary semantic structure of paths. Specifically, logic rules of different lengths (the number of relations in rule body) in the form of Horn clauses are first mined from the KG and elaborately encoded for representation learning. Then, the rules of length 2 are applied to compose paths accurately while the rules of length 1 are explicitly employed to create semantic associations among relations and constrain relation embeddings. Besides, the confidence level of each rule is also considered in optimization to guarantee the availability of applying the rule to representation learning. Extensive experimental results illustrate that RPJE outperforms other state-of-the-art baselines on KG completion task, which also demonstrate the superiority of utilizing logic rules as well as paths for improving the accuracy and explainability of representation learning.

Multi-relation Question Answering is a challenging task, due to the requirement of elaborated analysis on questions and reasoning over multiple fact triples in knowledge base. In this paper, we present a novel model called Interpretable Reasoning Network that employs an interpretable, hop-by-hop reasoning process for question answering. The model dynamically decides which part of an input question should be analyzed at each hop; predicts a relation that corresponds to the current parsed results; utilizes the predicted relation to update the question representation and the state of the reasoning process; and then drives the next-hop reasoning. Experiments show that our model yields state-of-the-art results on two datasets. More interestingly, the model can offer traceable and observable intermediate predictions for reasoning analysis and failure diagnosis, thereby allowing manual manipulation in predicting the final answer.

北京阿比特科技有限公司