Logic synthesis is the first and most vital step in chip design. This steps converts a chip specification written in a hardware description language (such as Verilog) into an optimized implementation using Boolean logic gates. State-of-the-art logic synthesis algorithms have a large number of logic minimization heuristics, typically applied sequentially based on human experience and intuition. The choice of the order greatly impacts the quality (e.g., area and delay) of the synthesized circuit. In this paper, we propose INVICTUS, a model-based offline reinforcement learning (RL) solution that automatically generates a sequence of logic minimization heuristics ("synthesis recipe") based on a training dataset of previously seen designs. A key challenge is that new designs can range from being very similar to past designs (e.g., adders and multipliers) to being completely novel (e.g., new processor instructions). %Compared to prior work, INVICTUS is the first solution that uses a mix of RL and search methods joint with an online out-of-distribution detector to generate synthesis recipes over a wide range of benchmarks. Our results demonstrate significant improvement in area-delay product (ADP) of synthesized circuits with up to 30\% improvement over state-of-the-art techniques. Moreover, INVICTUS achieves up to $6.3\times$ runtime reduction (iso-ADP) compared to the state-of-the-art.
Ultra-reliable low latency communications (URLLC) service is envisioned to enable use cases with strict reliability and latency requirements in 5G. One approach for enabling URLLC services is to leverage Reinforcement Learning (RL) to efficiently allocate wireless resources. However, with conventional RL methods, the decision variables (though being deployed at various network layers) are typically optimized in the same control loop, leading to significant practical limitations on the control loop's delay as well as excessive signaling and energy consumption. In this paper, we propose a multi-agent Hierarchical RL (HRL) framework that enables the implementation of multi-level policies with different control loop timescales. Agents with faster control loops are deployed closer to the base station, while the ones with slower control loops are at the edge or closer to the core network providing high-level guidelines for low-level actions. On a use case from the prior art, with our HRL framework, we optimized the maximum number of retransmissions and transmission power of industrial devices. Our extensive simulation results on the factory automation scenario show that the HRL framework achieves better performance as the baseline single-agent RL method, with significantly less overhead of signal transmissions and delay compared to the one-agent RL methods.
The provision of fire services plays a vital role in ensuring the safety of residents' lives and property. The spatial layout of fire stations is closely linked to the efficiency of fire rescue operations. Traditional approaches have primarily relied on mathematical planning models to generate appropriate layouts by summarizing relevant evaluation criteria. However, this optimization process presents significant challenges due to the extensive decision space, inherent conflicts among criteria, and decision-makers' preferences. To address these challenges, we propose FSLens, an interactive visual analytics system that enables in-depth evaluation and rational optimization of fire station layout. Our approach integrates fire records and correlation features to reveal fire occurrence patterns and influencing factors using spatiotemporal sequence forecasting. We design an interactive visualization method to explore areas within the city that are potentially under-resourced for fire service based on the fire distribution and existing fire station layout. Moreover, we develop a collaborative human-computer multi-criteria decision model that generates multiple candidate solutions for optimizing firefighting resources within these areas. We simulate and compare the impact of different solutions on the original layout through well-designed visualizations, providing decision-makers with the most satisfactory solution. We demonstrate the effectiveness of our approach through one case study with real-world datasets. The feedback from domain experts indicates that our system helps them to better identify and improve potential gaps in the current fire station layout.
Teleoperated humanoid robots hold significant potential as physical avatars for humans in hazardous and inaccessible environments, with the goal of channeling human intelligence and sensorimotor skills through these robotic counterparts. Precise coordination between humans and robots is crucial for accomplishing whole-body behaviors involving locomotion and manipulation. To progress successfully, dynamic synchronization between humans and humanoid robots must be achieved. This work enhances advancements in whole-body dynamic telelocomotion, addressing challenges in robustness. By embedding the hybrid and underactuated nature of bipedal walking into a virtual human walking interface, we achieve dynamically consistent walking gait generation. Additionally, we integrate a reactive robot controller into a whole-body dynamic telelocomotion framework. Thus, allowing the realization of telelocomotion behaviors on the full-body dynamics of a bipedal robot. Real-time telelocomotion simulation experiments validate the effectiveness of our methods, demonstrating that a trained human pilot can dynamically synchronize with a simulated bipedal robot, achieving sustained locomotion, controlling walking speeds within the range of 0.0 m/s to 0.3 m/s, and enabling backward walking for distances of up to 2.0 m. This research contributes to advancing teleoperated humanoid robots and paves the way for future developments in synchronized locomotion between humans and bipedal robots.
Scenario-based testing is becoming increasingly important in safety assurance for automated driving. However, comprehensive and sufficiently complete coverage of the scenario space requires significant effort and resources if using only real-world data. To address this issue, driving scenario generation methods are developed and used more frequently, but the benefit of substituting generated data for real-world data has not yet been quantified. Additionally, the coverage of a set of concrete scenarios within a given logical scenario space has not been predicted yet. This paper proposes a methodology to quantify the cost-optimal usage of scenario generation approaches to reach a certainly complete scenario space coverage under given quality constraints and parametrization. Therefore, individual process steps for scenario generation and usage are investigated and evaluated using a meta model for the abstraction of knowledge-based and data-driven methods. Furthermore, a methodology is proposed to fit the meta model including the prediction of reachable complete coverage, quality criteria, and costs. Finally, the paper exemplary examines the suitability of a hybrid generation model under technical, economical, and quality constraints in comparison to different real-world scenario mining methods.
Wildlife camera trap images are being used extensively to investigate animal abundance, habitat associations, and behavior, which is complicated by the fact that experts must first classify the images manually. Artificial intelligence systems can take over this task but usually need a large number of already-labeled training images to achieve sufficient performance. This requirement necessitates human expert labor and poses a particular challenge for projects with few cameras or short durations. We propose a label-efficient learning strategy that enables researchers with small or medium-sized image databases to leverage the potential of modern machine learning, thus freeing crucial resources for subsequent analyses. Our methodological proposal is two-fold: (1) We improve current strategies of combining object detection and image classification by tuning the hyperparameters of both models. (2) We provide an active learning (AL) system that allows training deep learning models very efficiently in terms of required human-labeled training images. We supply a software package that enables researchers to use these methods directly and thereby ensure the broad applicability of the proposed framework in ecological practice. We show that our tuning strategy improves predictive performance. We demonstrate how the AL pipeline reduces the amount of pre-labeled data needed to achieve a specific predictive performance and that it is especially valuable for improving out-of-sample predictive performance. We conclude that the combination of tuning and AL increases predictive performance substantially. Furthermore, we argue that our work can broadly impact the community through the ready-to-use software package provided. Finally, the publication of our models tailored to European wildlife data enriches existing model bases mostly trained on data from Africa and North America.
Sampling from diffusion probabilistic models (DPMs) can be viewed as a piecewise distribution transformation, which generally requires hundreds or thousands of steps of the inverse diffusion trajectory to get a high-quality image. Recent progress in designing fast samplers for DPMs achieves a trade-off between sampling speed and sample quality by knowledge distillation or adjusting the variance schedule or the denoising equation. However, it can't be optimal in both aspects and often suffer from mode mixture in short steps. To tackle this problem, we innovatively regard inverse diffusion as an optimal transport (OT) problem between latents at different stages and propose the DPM-OT, a unified learning framework for fast DPMs with a direct expressway represented by OT map, which can generate high-quality samples within around 10 function evaluations. By calculating the semi-discrete optimal transport map between the data latents and the white noise, we obtain an expressway from the prior distribution to the data distribution, while significantly alleviating the problem of mode mixture. In addition, we give the error bound of the proposed method, which theoretically guarantees the stability of the algorithm. Extensive experiments validate the effectiveness and advantages of DPM-OT in terms of speed and quality (FID and mode mixture), thus representing an efficient solution for generative modeling. Source codes are available at //github.com/cognaclee/DPM-OT
In the absence of explicit or tractable likelihoods, Bayesians often resort to approximate Bayesian computation (ABC) for inference. Our work bridges ABC with deep neural implicit samplers based on generative adversarial networks (GANs) and adversarial variational Bayes. Both ABC and GANs compare aspects of observed and fake data to simulate from posteriors and likelihoods, respectively. We develop a Bayesian GAN (B-GAN) sampler that directly targets the posterior by solving an adversarial optimization problem. B-GAN is driven by a deterministic mapping learned on the ABC reference by conditional GANs. Once the mapping has been trained, iid posterior samples are obtained by filtering noise at a negligible additional cost. We propose two post-processing local refinements using (1) data-driven proposals with importance reweighting, and (2) variational Bayes. We support our findings with frequentist-Bayesian results, showing that the typical total variation distance between the true and approximate posteriors converges to zero for certain neural network generators and discriminators. Our findings on simulated data show highly competitive performance relative to some of the most recent likelihood-free posterior simulators.
When learning tasks over time, artificial neural networks suffer from a problem known as Catastrophic Forgetting (CF). This happens when the weights of a network are overwritten during the training of a new task causing forgetting of old information. To address this issue, we propose MetA Reusable Knowledge or MARK, a new method that fosters weight reusability instead of overwriting when learning a new task. Specifically, MARK keeps a set of shared weights among tasks. We envision these shared weights as a common Knowledge Base (KB) that is not only used to learn new tasks, but also enriched with new knowledge as the model learns new tasks. Key components behind MARK are two-fold. On the one hand, a metalearning approach provides the key mechanism to incrementally enrich the KB with new knowledge and to foster weight reusability among tasks. On the other hand, a set of trainable masks provides the key mechanism to selectively choose from the KB relevant weights to solve each task. By using MARK, we achieve state of the art results in several popular benchmarks, surpassing the best performing methods in terms of average accuracy by over 10% on the 20-Split-MiniImageNet dataset, while achieving almost zero forgetfulness using 55% of the number of parameters. Furthermore, an ablation study provides evidence that, indeed, MARK is learning reusable knowledge that is selectively used by each task.
Bid optimization for online advertising from single advertiser's perspective has been thoroughly investigated in both academic research and industrial practice. However, existing work typically assume competitors do not change their bids, i.e., the wining price is fixed, leading to poor performance of the derived solution. Although a few studies use multi-agent reinforcement learning to set up a cooperative game, they still suffer the following drawbacks: (1) They fail to avoid collusion solutions where all the advertisers involved in an auction collude to bid an extremely low price on purpose. (2) Previous works cannot well handle the underlying complex bidding environment, leading to poor model convergence. This problem could be amplified when handling multiple objectives of advertisers which are practical demands but not considered by previous work. In this paper, we propose a novel multi-objective cooperative bid optimization formulation called Multi-Agent Cooperative bidding Games (MACG). MACG sets up a carefully designed multi-objective optimization framework where different objectives of advertisers are incorporated. A global objective to maximize the overall profit of all advertisements is added in order to encourage better cooperation and also to protect self-bidding advertisers. To avoid collusion, we also introduce an extra platform revenue constraint. We analyze the optimal functional form of the bidding formula theoretically and design a policy network accordingly to generate auction-level bids. Then we design an efficient multi-agent evolutionary strategy for model optimization. Offline experiments and online A/B tests conducted on the Taobao platform indicate both single advertiser's objective and global profit have been significantly improved compared to state-of-art methods.
Reasoning with knowledge expressed in natural language and Knowledge Bases (KBs) is a major challenge for Artificial Intelligence, with applications in machine reading, dialogue, and question answering. General neural architectures that jointly learn representations and transformations of text are very data-inefficient, and it is hard to analyse their reasoning process. These issues are addressed by end-to-end differentiable reasoning systems such as Neural Theorem Provers (NTPs), although they can only be used with small-scale symbolic KBs. In this paper we first propose Greedy NTPs (GNTPs), an extension to NTPs addressing their complexity and scalability limitations, thus making them applicable to real-world datasets. This result is achieved by dynamically constructing the computation graph of NTPs and including only the most promising proof paths during inference, thus obtaining orders of magnitude more efficient models. Then, we propose a novel approach for jointly reasoning over KBs and textual mentions, by embedding logic facts and natural language sentences in a shared embedding space. We show that GNTPs perform on par with NTPs at a fraction of their cost while achieving competitive link prediction results on large datasets, providing explanations for predictions, and inducing interpretable models. Source code, datasets, and supplementary material are available online at //github.com/uclnlp/gntp.