亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Motion forecasting is crucial in enabling autonomous vehicles to anticipate the future trajectories of surrounding agents. To do so, it requires solving mapping, detection, tracking, and then forecasting problems, in a multi-step pipeline. In this complex system, advances in conventional forecasting methods have been made using curated data, i.e., with the assumption of perfect maps, detection, and tracking. This paradigm, however, ignores any errors from upstream modules. Meanwhile, an emerging end-to-end paradigm, that tightly integrates the perception and forecasting architectures into joint training, promises to solve this issue. However, the evaluation protocols between the two methods were so far incompatible and their comparison was not possible. In fact, conventional forecasting methods are usually not trained nor tested in real-world pipelines (e.g., with upstream detection, tracking, and mapping modules). In this work, we aim to bring forecasting models closer to the real-world deployment. First, we propose a unified evaluation pipeline for forecasting methods with real-world perception inputs, allowing us to compare conventional and end-to-end methods for the first time. Second, our in-depth study uncovers a substantial performance gap when transitioning from curated to perception-based data. In particular, we show that this gap (1) stems not only from differences in precision but also from the nature of imperfect inputs provided by perception modules, and that (2) is not trivially reduced by simply finetuning on perception outputs. Based on extensive experiments, we provide recommendations for critical areas that require improvement and guidance towards more robust motion forecasting in the real world. The evaluation library for benchmarking models under standardized and practical conditions is provided: \url{//github.com/valeoai/MFEval}.

相關內容

Out-of-distribution (OOD) detection plays a vital role in enhancing the reliability of machine learning (ML) models. The emergence of large language models (LLMs) has catalyzed a paradigm shift within the ML community, showcasing their exceptional capabilities across diverse natural language processing tasks. While existing research has probed OOD detection with relative small-scale Transformers like BERT, RoBERTa and GPT-2, the stark differences in scales, pre-training objectives, and inference paradigms call into question the applicability of these findings to LLMs. This paper embarks on a pioneering empirical investigation of OOD detection in the domain of LLMs, focusing on LLaMA series ranging from 7B to 65B in size. We thoroughly evaluate commonly-used OOD detectors, scrutinizing their performance in both zero-grad and fine-tuning scenarios. Notably, we alter previous discriminative in-distribution fine-tuning into generative fine-tuning, aligning the pre-training objective of LLMs with downstream tasks. Our findings unveil that a simple cosine distance OOD detector demonstrates superior efficacy, outperforming other OOD detectors. We provide an intriguing explanation for this phenomenon by highlighting the isotropic nature of the embedding spaces of LLMs, which distinctly contrasts with the anisotropic property observed in smaller BERT family models. The new insight enhances our understanding of how LLMs detect OOD data, thereby enhancing their adaptability and reliability in dynamic environments. We have released the source code at \url{//github.com/Awenbocc/LLM-OOD} for other researchers to reproduce our results.

Our research aims to highlight and alleviate the complex tensions around online safety, privacy, and smartphone usage in families so that parents and teens can work together to better manage mobile privacy and security-related risks. We developed a mobile application ("app") for Community Oversight of Privacy and Security ("CO-oPS") and had parents and teens assess whether it would be applicable for use with their families. CO-oPS is an Android app that allows a group of users to co-monitor the apps installed on one another's devices and the privacy permissions granted to those apps. We conducted a study with 19 parent-teen (ages 13-17) pairs to understand how they currently managed mobile safety and app privacy within their family and then had them install, use, and evaluate the CO-oPS app. We found that both parents and teens gave little consideration to online safety and privacy before installing new apps or granting privacy permissions. When using CO-oPS, participants liked how the app increased transparency into one another's devices in a way that facilitated communication, but were less inclined to use features for in-app messaging or to hide apps from one another. Key themes related to power imbalances between parents and teens surfaced that made co-management challenging. Parents were more open to collaborative oversight than teens, who felt that it was not their place to monitor their parents, even though both often believed parents lacked the technological expertise to monitor themselves. Our study sheds light on why collaborative practices for managing online safety and privacy within families may be beneficial but also quite difficult to implement in practice. We provide recommendations for overcoming these challenges based on the insights gained from our study.

Software vulnerabilities (SVs) have become a common, serious, and crucial concern to safety-critical security systems. That leads to significant progress in the use of AI-based methods for software vulnerability detection (SVD). In practice, although AI-based methods have been achieving promising performances in SVD and other domain applications (e.g., computer vision), they are well-known to fail in detecting the ground-truth label of input data (referred to as out-of-distribution, OOD, data) lying far away from the training data distribution (i.e., in-distribution, ID). This drawback leads to serious issues where the models fail to indicate when they are likely mistaken. To address this problem, OOD detectors (i.e., determining whether an input is ID or OOD) have been applied before feeding the input data to the downstream AI-based modules. While OOD detection has been widely designed for computer vision and medical diagnosis applications, automated AI-based techniques for OOD source code data detection have not yet been well-studied and explored. To this end, in this paper, we propose an innovative deep learning-based approach addressing the OOD source code data identification problem. Our method is derived from an information-theoretic perspective with the use of innovative cluster-contrastive learning to effectively learn and leverage source code characteristics, enhancing data representation learning for solving the problem. The rigorous and comprehensive experiments on real-world source code datasets show the effectiveness and advancement of our approach compared to state-of-the-art baselines by a wide margin. In short, on average, our method achieves a significantly higher performance from around 15.27%, 7.39%, and 4.93% on the FPR, AUROC, and AUPR measures, respectively, in comparison with the baselines.

Real-world autonomous driving systems must make safe decisions in the face of rare and diverse traffic scenarios. Current state-of-the-art planners are mostly evaluated on real-world datasets like nuScenes (open-loop) or nuPlan (closed-loop). In particular, nuPlan seems to be an expressive evaluation method since it is based on real-world data and closed-loop, yet it mostly covers basic driving scenarios. This makes it difficult to judge a planner's capabilities to generalize to rarely-seen situations. Therefore, we propose a novel closed-loop benchmark interPlan containing several edge cases and challenging driving scenarios. We assess existing state-of-the-art planners on our benchmark and show that neither rule-based nor learning-based planners can safely navigate the interPlan scenarios. A recently evolving direction is the usage of foundation models like large language models (LLM) to handle generalization. We evaluate an LLM-only planner and introduce a novel hybrid planner that combines an LLM-based behavior planner with a rule-based motion planner that achieves state-of-the-art performance on our benchmark.

Forecasting vehicular motions in autonomous driving requires a deep understanding of agent interactions and the preservation of motion equivariance under Euclidean geometric transformations. Traditional models often lack the sophistication needed to handle the intricate dynamics inherent to autonomous vehicles and the interaction relationships among agents in the scene. As a result, these models have a lower model capacity, which then leads to higher prediction errors and lower training efficiency. In our research, we employ EqMotion, a leading equivariant particle, and human prediction model that also accounts for invariant agent interactions, for the task of multi-agent vehicle motion forecasting. In addition, we use a multi-modal prediction mechanism to account for multiple possible future paths in a probabilistic manner. By leveraging EqMotion, our model achieves state-of-the-art (SOTA) performance with fewer parameters (1.2 million) and a significantly reduced training time (less than 2 hours).

The tremendous success of Stack Overflow has accumulated an extensive corpus of software engineering knowledge, thus motivating researchers to propose various solutions for analyzing its content.The performance of such solutions hinges significantly on the selection of representation model for Stack Overflow posts. As the volume of literature on Stack Overflow continues to burgeon, it highlights the need for a powerful Stack Overflow post representation model and drives researchers' interest in developing specialized representation models that can adeptly capture the intricacies of Stack Overflow posts. The state-of-the-art (SOTA) Stack Overflow post representation models are Post2Vec and BERTOverflow, which are built upon trendy neural networks such as convolutional neural network (CNN) and Transformer architecture (e.g., BERT). Despite their promising results, these representation methods have not been evaluated in the same experimental setting. To fill the research gap, we first empirically compare the performance of the representation models designed specifically for Stack Overflow posts (Post2Vec and BERTOverflow) in a wide range of related tasks, i.e., tag recommendation, relatedness prediction, and API recommendation. To find more suitable representation models for the posts, we further explore a diverse set of BERT-based models, including (1) general domain language models (RoBERTa and Longformer) and (2) language models built with software engineering-related textual artifacts (CodeBERT, GraphCodeBERT, and seBERT). However, it also illustrates the ``No Silver Bullet'' concept, as none of the models consistently wins against all the others. Inspired by the findings, we propose SOBERT, which employs a simple-yet-effective strategy to improve the best-performing model by continuing the pre-training phase with the textual artifact from Stack Overflow.

Software vulnerabilities (SVs) have become a common, serious, and crucial concern to safety-critical security systems. That leads to significant progress in the use of AI-based methods for software vulnerability detection (SVD). In practice, although AI-based methods have been achieving promising performances in SVD and other domain applications (e.g., computer vision), they are well-known to fail in detecting the ground-truth label of input data (referred to as out-of-distribution, OOD, data) lying far away from the training data distribution (i.e., in-distribution, ID). This drawback leads to serious issues where the models fail to indicate when they are likely mistaken. To address this problem, OOD detectors (i.e., determining whether an input is ID or OOD) have been applied before feeding the input data to the downstream AI-based modules. While OOD detection has been widely designed for computer vision and medical diagnosis applications, automated AI-based techniques for OOD source code data detection have not yet been well-studied and explored. To this end, in this paper, we propose an innovative deep learning-based approach addressing the OOD source code data identification problem. Our method is derived from an information-theoretic perspective with the use of innovative cluster-contrastive learning to effectively learn and leverage source code characteristics, enhancing data representation learning for solving the problem. The rigorous and comprehensive experiments on real-world source code datasets show the effectiveness and advancement of our approach compared to state-of-the-art baselines by a wide margin. In short, on average, our method achieves a significantly higher performance from around 15.27%, 7.39%, and 4.93% on the FPR, AUROC, and AUPR measures, respectively, in comparison with the baselines.

Multimodal Large Language models (MLLMs) have shown promise in web-related tasks, but evaluating their performance in the web domain remains a challenge due to the lack of comprehensive benchmarks. Existing benchmarks are either designed for general multimodal tasks, failing to capture the unique characteristics of web pages, or focus on end-to-end web agent tasks, unable to measure fine-grained abilities such as OCR, understanding, and grounding. In this paper, we introduce \bench{}, a multimodal benchmark designed to assess the capabilities of MLLMs across a variety of web tasks. \bench{} consists of seven tasks, and comprises 1.5K human-curated instances from 139 real websites, covering 87 sub-domains. We evaluate 14 open-source MLLMs, Gemini Pro, Claude-3 series, and GPT-4V(ision) on \bench{}, revealing significant challenges and performance gaps. Further analysis highlights the limitations of current MLLMs, including inadequate grounding in text-rich environments and subpar performance with low-resolution image inputs. We believe \bench{} will serve as a valuable resource for the research community and contribute to the creation of more powerful and versatile MLLMs for web-related applications.

Mobile manipulators always need to determine feasible base positions prior to carrying out navigation-manipulation tasks. Real-world environments are often cluttered with various furniture, obstacles, and dozens of other objects. Efficiently computing base positions poses a challenge. In this work, we introduce a framework named MoMa-Pos to address this issue. MoMa-Pos first learns to predict a small set of objects that, taken together, would be sufficient for finding base positions using a graph embedding architecture. MoMa-Pos then calculates standing positions by considering furniture structures, robot models, and obstacles comprehensively. We have extensively evaluated the proposed MoMa-Pos across different settings (e.g., environment and algorithm parameters) and with various mobile manipulators. Our empirical results show that MoMa-Pos demonstrates remarkable effectiveness and efficiency in its performance, surpassing the methods in the literature. %, but also is adaptable to cluttered environments and different robot models. Supplementary material can be found at \url{//yding25.com/MoMa-Pos}.

Compared with cheap addition operation, multiplication operation is of much higher computation complexity. The widely-used convolutions in deep neural networks are exactly cross-correlation to measure the similarity between input feature and convolution filters, which involves massive multiplications between float values. In this paper, we present adder networks (AdderNets) to trade these massive multiplications in deep neural networks, especially convolutional neural networks (CNNs), for much cheaper additions to reduce computation costs. In AdderNets, we take the $\ell_1$-norm distance between filters and input feature as the output response. The influence of this new similarity measure on the optimization of neural network have been thoroughly analyzed. To achieve a better performance, we develop a special back-propagation approach for AdderNets by investigating the full-precision gradient. We then propose an adaptive learning rate strategy to enhance the training procedure of AdderNets according to the magnitude of each neuron's gradient. As a result, the proposed AdderNets can achieve 74.9% Top-1 accuracy 91.7% Top-5 accuracy using ResNet-50 on the ImageNet dataset without any multiplication in convolution layer.

北京阿比特科技有限公司