亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Online marketplaces use rating systems to promote the discovery of high-quality products. However, these systems also lead to high variance in producers' economic outcomes: a new producer who sells high-quality items, may unluckily receive one low rating early on, negatively impacting their future popularity. We investigate the design of rating systems that balance the goals of identifying high-quality products (efficiency) and minimizing the variance in economic outcomes of producers of similar quality (individual producer fairness). We show that there is a trade-off between these two goals: rating systems that promote efficiency are necessarily less individually fair to producers. We introduce prior-weighted rating systems as an approach to managing this trade-off. Informally, the system we propose sets a system-wide prior for the quality of an incoming product; subsequently, the system updates that prior to a posterior for each producer's quality based on user-generated ratings over time. We show theoretically that in markets where products accrue reviews at an equal rate, the strength of the rating system's prior determines the operating point on the identified trade-off: the stronger the prior, the more the marketplace discounts early ratings data (increasing individual fairness), but the slower the platform is in learning about true item quality (so efficiency suffers). We further analyze this trade-off in a responsive market where customers make decisions based on historical ratings. Through calibrated simulations, we show that the choice of prior strength mediates the same efficiency-consistency trade-off in this setting. Overall, we demonstrate that by tuning the prior as a design choice in a prior-weighted rating system, platforms can be intentional about the balance between efficiency and producer fairness.

相關內容

Multiobjective optimization is a hot topic in the artificial intelligence and operations research communities. The design and development of multiobjective methods is a frequent task for researchers and practitioners. As a result of this vibrant activity, a myriad of techniques have been proposed in the literature to date, demonstrating a significant effectiveness for dealing with situations coming from a wide range of real-world areas. This paper is focused on a multiobjective problem related to optimizing Infrastructure-as-Code deployment configurations. The system implemented for solving this problem has been coined as IaC Optimizer Platform (IOP). Despite the fact that a prototypical version of the IOP has been introduced in the literature before, a deeper analysis focused on the resolution of the problem is needed, in order to determine which is the most appropriate multiobjective method for embedding in the IOP. The main motivation behind the analysis conducted in this work is to enhance the IOP performance as much as possible. This is a crucial aspect of this system, deeming that it will be deployed in a real environment, as it is being developed as part of a H2020 European project. Going deeper, we resort in this paper to nine different evolutionary computation-based multiobjective algorithms. For assessing the quality of the considered solvers, 12 different problem instances have been generated based on real-world settings. Results obtained by each method after 10 independent runs have been compared using Friedman's non-parametric tests. Findings reached from the tests carried out lad to the creation of a multi-algorithm system, capable of applying different techniques according to the user's needs.

As a classical generative modeling approach, energy-based models have the natural advantage of flexibility in the form of the energy function. Recently, energy-based models have achieved great success in modeling high-dimensional data in computer vision and natural language processing. In line with these advancements, we build a multi-purpose energy-based probabilistic model for High Energy Physics events at the Large Hadron Collider. This framework builds on a powerful generative model and describes higher-order inter-particle interactions. It suits different encoding architectures and builds on implicit generation. As for applicative aspects, it can serve as a powerful parameterized event generator for physics simulation, a generic anomalous signal detector free from spurious correlations, and an augmented event classifier for particle identification.

To enhance perception performance in complex and extensive scenarios within the realm of autonomous driving, there has been a noteworthy focus on temporal modeling, with a particular emphasis on streaming methods. The prevailing trend in streaming models involves the utilization of stream queries for the propagation of temporal information. Despite the prevalence of this approach, the direct application of the streaming paradigm to the construction of vectorized high-definition maps (HD-maps) fails to fully harness the inherent potential of temporal information. This paper introduces the Stream Query Denoising (SQD) strategy as a novel approach for temporal modeling in high-definition map (HD-map) construction. SQD is designed to facilitate the learning of temporal consistency among map elements within the streaming model. The methodology involves denoising the queries that have been perturbed by the addition of noise to the ground-truth information from the preceding frame. This denoising process aims to reconstruct the ground-truth information for the current frame, thereby simulating the prediction process inherent in stream queries. The SQD strategy can be applied to those streaming methods (e.g., StreamMapNet) to enhance the temporal modeling. The proposed SQD-MapNet is the StreamMapNet equipped with SQD. Extensive experiments on nuScenes and Argoverse2 show that our method is remarkably superior to other existing methods across all settings of close range and long range. The code will be available soon.

An important development direction in the Single-Image Super-Resolution (SISR) algorithms is to improve the efficiency of the algorithms. Recently, efficient Super-Resolution (SR) research focuses on reducing model complexity and improving efficiency through improved deep small kernel convolution, leading to a small receptive field. The large receptive field obtained by large kernel convolution can significantly improve image quality, but the computational cost is too high. To improve the reconstruction details of efficient super-resolution reconstruction, we propose a Symmetric Visual Attention Network (SVAN) by applying large receptive fields. The SVAN decomposes a large kernel convolution into three different combinations of convolution operations and combines them with an attention mechanism to form a Symmetric Large Kernel Attention Block (SLKAB), which forms a symmetric attention block with a bottleneck structure by the size of the receptive field in the convolution combination to extract depth features effectively as the basic component of the SVAN. Our network gets a large receptive field while minimizing the number of parameters and improving the perceptual ability of the model. The experimental results show that the proposed SVAN can obtain high-quality super-resolution reconstruction results using only about 30% of the parameters of existing SOTA methods.

With the rise of powerful pre-trained vision-language models like CLIP, it becomes essential to investigate ways to adapt these models to downstream datasets. A recently proposed method named Context Optimization (CoOp) introduces the concept of prompt learning -- a recent trend in NLP -- to the vision domain for adapting pre-trained vision-language models. Specifically, CoOp turns context words in a prompt into a set of learnable vectors and, with only a few labeled images for learning, can achieve huge improvements over intensively-tuned manual prompts. In our study we identify a critical problem of CoOp: the learned context is not generalizable to wider unseen classes within the same dataset, suggesting that CoOp overfits base classes observed during training. To address the problem, we propose Conditional Context Optimization (CoCoOp), which extends CoOp by further learning a lightweight neural network to generate for each image an input-conditional token (vector). Compared to CoOp's static prompts, our dynamic prompts adapt to each instance and are thus less sensitive to class shift. Extensive experiments show that CoCoOp generalizes much better than CoOp to unseen classes, even showing promising transferability beyond a single dataset; and yields stronger domain generalization performance as well. Code is available at //github.com/KaiyangZhou/CoOp.

Invariant approaches have been remarkably successful in tackling the problem of domain generalization, where the objective is to perform inference on data distributions different from those used in training. In our work, we investigate whether it is possible to leverage domain information from the unseen test samples themselves. We propose a domain-adaptive approach consisting of two steps: a) we first learn a discriminative domain embedding from unsupervised training examples, and b) use this domain embedding as supplementary information to build a domain-adaptive model, that takes both the input as well as its domain into account while making predictions. For unseen domains, our method simply uses few unlabelled test examples to construct the domain embedding. This enables adaptive classification on any unseen domain. Our approach achieves state-of-the-art performance on various domain generalization benchmarks. In addition, we introduce the first real-world, large-scale domain generalization benchmark, Geo-YFCC, containing 1.1M samples over 40 training, 7 validation, and 15 test domains, orders of magnitude larger than prior work. We show that the existing approaches either do not scale to this dataset or underperform compared to the simple baseline of training a model on the union of data from all training domains. In contrast, our approach achieves a significant improvement.

Data augmentation has been widely used to improve generalizability of machine learning models. However, comparatively little work studies data augmentation for graphs. This is largely due to the complex, non-Euclidean structure of graphs, which limits possible manipulation operations. Augmentation operations commonly used in vision and language have no analogs for graphs. Our work studies graph data augmentation for graph neural networks (GNNs) in the context of improving semi-supervised node-classification. We discuss practical and theoretical motivations, considerations and strategies for graph data augmentation. Our work shows that neural edge predictors can effectively encode class-homophilic structure to promote intra-class edges and demote inter-class edges in given graph structure, and our main contribution introduces the GAug graph data augmentation framework, which leverages these insights to improve performance in GNN-based node classification via edge prediction. Extensive experiments on multiple benchmarks show that augmentation via GAug improves performance across GNN architectures and datasets.

Recently, neural networks have been widely used in e-commerce recommender systems, owing to the rapid development of deep learning. We formalize the recommender system as a sequential recommendation problem, intending to predict the next items that the user might be interacted with. Recent works usually give an overall embedding from a user's behavior sequence. However, a unified user embedding cannot reflect the user's multiple interests during a period. In this paper, we propose a novel controllable multi-interest framework for the sequential recommendation, called ComiRec. Our multi-interest module captures multiple interests from user behavior sequences, which can be exploited for retrieving candidate items from the large-scale item pool. These items are then fed into an aggregation module to obtain the overall recommendation. The aggregation module leverages a controllable factor to balance the recommendation accuracy and diversity. We conduct experiments for the sequential recommendation on two real-world datasets, Amazon and Taobao. Experimental results demonstrate that our framework achieves significant improvements over state-of-the-art models. Our framework has also been successfully deployed on the offline Alibaba distributed cloud platform.

For better user experience and business effectiveness, Click-Through Rate (CTR) prediction has been one of the most important tasks in E-commerce. Although extensive CTR prediction models have been proposed, learning good representation of items from multimodal features is still less investigated, considering an item in E-commerce usually contains multiple heterogeneous modalities. Previous works either concatenate the multiple modality features, that is equivalent to giving a fixed importance weight to each modality; or learn dynamic weights of different modalities for different items through technique like attention mechanism. However, a problem is that there usually exists common redundant information across multiple modalities. The dynamic weights of different modalities computed by using the redundant information may not correctly reflect the different importance of each modality. To address this, we explore the complementarity and redundancy of modalities by considering modality-specific and modality-invariant features differently. We propose a novel Multimodal Adversarial Representation Network (MARN) for the CTR prediction task. A multimodal attention network first calculates the weights of multiple modalities for each item according to its modality-specific features. Then a multimodal adversarial network learns modality-invariant representations where a double-discriminators strategy is introduced. Finally, we achieve the multimodal item representations by combining both modality-specific and modality-invariant representations. We conduct extensive experiments on both public and industrial datasets, and the proposed method consistently achieves remarkable improvements to the state-of-the-art methods. Moreover, the approach has been deployed in an operational E-commerce system and online A/B testing further demonstrates the effectiveness.

Multi-relation Question Answering is a challenging task, due to the requirement of elaborated analysis on questions and reasoning over multiple fact triples in knowledge base. In this paper, we present a novel model called Interpretable Reasoning Network that employs an interpretable, hop-by-hop reasoning process for question answering. The model dynamically decides which part of an input question should be analyzed at each hop; predicts a relation that corresponds to the current parsed results; utilizes the predicted relation to update the question representation and the state of the reasoning process; and then drives the next-hop reasoning. Experiments show that our model yields state-of-the-art results on two datasets. More interestingly, the model can offer traceable and observable intermediate predictions for reasoning analysis and failure diagnosis.

北京阿比特科技有限公司