Graph neural networks based on iterative one-hop message passing have been shown to struggle in harnessing information from distant nodes effectively. Conversely, graph transformers allow each node to attend to all other nodes directly, but suffer from high computational complexity and have to rely on ad-hoc positional encoding to bake in the graph inductive bias. In this paper, we propose a new architecture to reconcile these challenges. Our approach stems from the recent breakthroughs in long-range modeling provided by deep state-space models on sequential data: for a given target node, our model aggregates other nodes by their shortest distances to the target and uses a parallelizable linear recurrent network over the chain of distances to provide a natural encoding of its neighborhood structure. With no need for positional encoding, we empirically show that the performance of our model is highly competitive compared with that of state-of-the-art graph transformers on various benchmarks, at a drastically reduced computational complexity. In addition, we show that our model is theoretically more expressive than one-hop message passing neural networks.
We consider the problem of policy transfer between two Markov Decision Processes (MDPs). We introduce a lemma based on existing theoretical results in reinforcement learning to measure the relativity gap between two arbitrary MDPs, that is the difference between any two cumulative expected returns defined on different policies and environment dynamics. Based on this lemma, we propose two new algorithms referred to as Relative Policy Optimization (RPO) and Relative Transition Optimization (RTO), which offer fast policy transfer and dynamics modelling, respectively. RPO transfers the policy evaluated in one environment to maximize the return in another, while RTO updates the parameterized dynamics model to reduce the gap between the dynamics of the two environments. Integrating the two algorithms results in the complete Relative Policy-Transition Optimization (RPTO) algorithm, in which the policy interacts with the two environments simultaneously, such that data collections from two environments, policy and transition updates are completed in one closed loop to form a principled learning framework for policy transfer. We demonstrate the effectiveness of RPTO on a set of MuJoCo continuous control tasks by creating policy transfer problems via variant dynamics.
Efficient implementation of massive multiple-input-multiple-output (MIMO) transceivers is essential for the next-generation wireless networks. To reduce the high computational complexity of the massive MIMO transceiver, in this paper, we propose a new massive MIMO architecture using finite-precision arithmetic. First, we conduct the rounding error analysis and derive the lower bound of the achievable rate for single-input-multiple-output (SIMO) using maximal ratio combining (MRC) and multiple-input-single-output (MISO) systems using maximal ratio transmission (MRT) with finite-precision arithmetic. Then, considering the multi-user scenario, the rounding error analysis of zero-forcing (ZF) detection and precoding is derived by using the normal equations (NE) method. The corresponding lower bounds of the achievable sum rate are also derived and asymptotic analyses are presented. Built upon insights from these analyses and lower bounds, we propose a mixed-precision architecture for massive MIMO systems to offset performance gaps due to finite-precision arithmetic. The corresponding analysis of rounding errors and computational costs is obtained. Simulation results validate the derived bounds and underscore the superiority of the proposed mixed-precision architecture to the conventional structure.
Modern neural networks are over-parameterized and thus rely on strong regularization such as data augmentation and weight decay to reduce overfitting and improve generalization. The dominant form of data augmentation applies invariant transforms, where the learning target of a sample is invariant to the transform applied to that sample. We draw inspiration from human visual classification studies and propose generalizing augmentation with invariant transforms to soft augmentation where the learning target softens non-linearly as a function of the degree of the transform applied to the sample: e.g., more aggressive image crop augmentations produce less confident learning targets. We demonstrate that soft targets allow for more aggressive data augmentation, offer more robust performance boosts, work with other augmentation policies, and interestingly, produce better calibrated models (since they are trained to be less confident on aggressively cropped/occluded examples). Combined with existing aggressive augmentation strategies, soft target 1) doubles the top-1 accuracy boost across Cifar-10, Cifar-100, ImageNet-1K, and ImageNet-V2, 2) improves model occlusion performance by up to $4\times$, and 3) halves the expected calibration error (ECE). Finally, we show that soft augmentation generalizes to self-supervised classification tasks. Code available at //github.com/youngleox/soft_augmentation
Cross-corpus speech emotion recognition (SER) aims to transfer emotional knowledge from a labeled source corpus to an unlabeled corpus. However, prior methods require access to source data during adaptation, which is unattainable in real-life scenarios due to data privacy protection concerns. This paper tackles a more practical task, namely source-free cross-corpus SER, where a pre-trained source model is adapted to the target domain without access to source data. To address the problem, we propose a novel method called emotion-aware contrastive adaptation network (ECAN). The core idea is to capture local neighborhood information between samples while considering the global class-level adaptation. Specifically, we propose a nearest neighbor contrastive learning to promote local emotion consistency among features of highly similar samples. Furthermore, relying solely on nearest neighborhoods may lead to ambiguous boundaries between clusters. Thus, we incorporate supervised contrastive learning to encourage greater separation between clusters representing different emotions, thereby facilitating improved class-level adaptation. Extensive experiments indicate that our proposed ECAN significantly outperforms state-of-the-art methods under the source-free cross-corpus SER setting on several speech emotion corpora.
Low Earth orbit (LEO) mega-constellation satellite networks have shown great potential to extend the coverage capability of conventional terrestrial networks. How to systematically define, quantify, and assess the technical performance of LEO mega-constellation satellite networks remains an open issue. In this paper, we propose a comprehensive key performance indicator (KPI) framework for mega-constellation based LEO satellite networks. An efficient LEO constellation oriented performance evaluation methodology is then carefully designed by resorting to the concept of interfering area and spherical geographic cell. We have carried out rigorous system-level simulations and provided numerical results to assess the KPI framework. It can be observed that the achieved area traffic capacity of the reference LEO constellation is around 4 Kbps/km2, with service availability ranging from 0.36 to 0.39. Besides, the average access success probability and handover failure rate is approximate to 96% and 10%, respectively, in the nearest satellite association scheme.
Neural networks often suffer from catastrophic interference (CI): performance on previously learned tasks drops off significantly when learning a new task. This contrasts strongly with humans, who can sequentially learn new tasks without appreciably forgetting previous tasks. Prior work has explored various techniques for mitigating CI such as regularization, rehearsal, generative replay, and distillation methods. The current work takes a different approach, one guided by cognitive science research showing that in naturalistic environments, the probability of encountering a task decreases as a power-law of the time since it was last performed. We argue that a realistic evaluation of techniques for the mitigation of CI should be performed in simulated naturalistic learning environments. Thus, we evaluate the extent of mitigation of CI when training simple rehearsal-based methods in power-law environments similar to the ones humans face. Our work explores this novel rehearsal-based approach for a domain-incremental task: learning permutations in the MNIST task. We compare our rehearsal environment with other baselines to show its efficacy in promoting continual learning. Additionally, we investigate whether this environment shows forward facilitation, i.e., faster learning of later tasks. Next, we explore the robustness of our learning environment to the number of tasks, model size, and amount of data rehearsed after each task. Notably, our results show that the performance is comparable or superior to that of models trained using popular regularization methods and also to rehearsals in non-power-law environments. The benefits of this training paradigm include simplicity and the lack of a need for extra neural circuitry. In addition, because our method is orthogonal to other methods, future research can combine training in power-law environments with other continual learning mechanisms.
Quantum communication networks (QCNs) utilize quantum mechanics for secure information transmission, but the reliance on fragile and expensive photonic quantum resources renders QCN resource optimization challenging. Unlike prior QCN works that relied on blindly compressing direct quantum embeddings of classical data, this letter proposes a novel quantum semantic communications (QSC) framework exploiting advancements in quantum machine learning and quantum semantic representations to extracts and embed only the relevant information from classical data into minimal high-dimensional quantum states that are accurately communicated over quantum channels with quantum communication and semantic fidelity measures. Simulation results indicate that, compared to semantic-agnostic QCN schemes, the proposed framework achieves approximately 50-75% reduction in quantum communication resources needed, while achieving a higher quantum semantic fidelity.
Vast amount of data generated from networks of sensors, wearables, and the Internet of Things (IoT) devices underscores the need for advanced modeling techniques that leverage the spatio-temporal structure of decentralized data due to the need for edge computation and licensing (data access) issues. While federated learning (FL) has emerged as a framework for model training without requiring direct data sharing and exchange, effectively modeling the complex spatio-temporal dependencies to improve forecasting capabilities still remains an open problem. On the other hand, state-of-the-art spatio-temporal forecasting models assume unfettered access to the data, neglecting constraints on data sharing. To bridge this gap, we propose a federated spatio-temporal model -- Cross-Node Federated Graph Neural Network (CNFGNN) -- which explicitly encodes the underlying graph structure using graph neural network (GNN)-based architecture under the constraint of cross-node federated learning, which requires that data in a network of nodes is generated locally on each node and remains decentralized. CNFGNN operates by disentangling the temporal dynamics modeling on devices and spatial dynamics on the server, utilizing alternating optimization to reduce the communication cost, facilitating computations on the edge devices. Experiments on the traffic flow forecasting task show that CNFGNN achieves the best forecasting performance in both transductive and inductive learning settings with no extra computation cost on edge devices, while incurring modest communication cost.
Approaches based on deep neural networks have achieved striking performance when testing data and training data share similar distribution, but can significantly fail otherwise. Therefore, eliminating the impact of distribution shifts between training and testing data is crucial for building performance-promising deep models. Conventional methods assume either the known heterogeneity of training data (e.g. domain labels) or the approximately equal capacities of different domains. In this paper, we consider a more challenging case where neither of the above assumptions holds. We propose to address this problem by removing the dependencies between features via learning weights for training samples, which helps deep models get rid of spurious correlations and, in turn, concentrate more on the true connection between discriminative features and labels. Extensive experiments clearly demonstrate the effectiveness of our method on multiple distribution generalization benchmarks compared with state-of-the-art counterparts. Through extensive experiments on distribution generalization benchmarks including PACS, VLCS, MNIST-M, and NICO, we show the effectiveness of our method compared with state-of-the-art counterparts.
Deep neural networks (DNNs) have been found to be vulnerable to adversarial examples resulting from adding small-magnitude perturbations to inputs. Such adversarial examples can mislead DNNs to produce adversary-selected results. Different attack strategies have been proposed to generate adversarial examples, but how to produce them with high perceptual quality and more efficiently requires more research efforts. In this paper, we propose AdvGAN to generate adversarial examples with generative adversarial networks (GANs), which can learn and approximate the distribution of original instances. For AdvGAN, once the generator is trained, it can generate adversarial perturbations efficiently for any instance, so as to potentially accelerate adversarial training as defenses. We apply AdvGAN in both semi-whitebox and black-box attack settings. In semi-whitebox attacks, there is no need to access the original target model after the generator is trained, in contrast to traditional white-box attacks. In black-box attacks, we dynamically train a distilled model for the black-box model and optimize the generator accordingly. Adversarial examples generated by AdvGAN on different target models have high attack success rate under state-of-the-art defenses compared to other attacks. Our attack has placed the first with 92.76% accuracy on a public MNIST black-box attack challenge.