Understanding vehicles in images is important for various applications such as intelligent transportation and self-driving system. Existing vehicle-centric works typically pre-train models on large-scale classification datasets and then fine-tune them for specific downstream tasks. However, they neglect the specific characteristics of vehicle perception in different tasks and might thus lead to sub-optimal performance. To address this issue, we propose a novel vehicle-centric pre-training framework called VehicleMAE, which incorporates the structural information including the spatial structure from vehicle profile information and the semantic structure from informative high-level natural language descriptions for effective masked vehicle appearance reconstruction. To be specific, we explicitly extract the sketch lines of vehicles as a form of the spatial structure to guide vehicle reconstruction. The more comprehensive knowledge distilled from the CLIP big model based on the similarity between the paired/unpaired vehicle image-text sample is further taken into consideration to help achieve a better understanding of vehicles. A large-scale dataset is built to pre-train our model, termed Autobot1M, which contains about 1M vehicle images and 12693 text information. Extensive experiments on four vehicle-based downstream tasks fully validated the effectiveness of our VehicleMAE. The source code and pre-trained models will be released at //github.com/Event-AHU/VehicleMAE.
Emotion recognition in software engineering texts is critical for understanding developer expressions and improving collaboration. This paper presents a comparative analysis of state-of-the-art Pre-trained Language Models (PTMs) for fine-grained emotion classification on two benchmark datasets from GitHub and Stack Overflow. We evaluate six transformer models - BERT, RoBERTa, ALBERT, DeBERTa, CodeBERT and GraphCodeBERT against the current best-performing tool SEntiMoji. Our analysis reveals consistent improvements ranging from 1.17% to 16.79% in terms of macro-averaged and micro-averaged F1 scores, with general domain models outperforming specialized ones. To further enhance PTMs, we incorporate polarity features in attention layer during training, demonstrating additional average gains of 1.0\% to 10.23\% over baseline PTMs approaches. Our work provides strong evidence for the advancements afforded by PTMs in recognizing nuanced emotions like Anger, Love, Fear, Joy, Sadness, and Surprise in software engineering contexts. Through comprehensive benchmarking and error analysis, we also outline scope for improvements to address contextual gaps.
Continuously learning a variety of audio-video semantics over time is crucial for audio-related reasoning tasks in our ever-evolving world. However, this is a nontrivial problem and poses two critical challenges: sparse spatio-temporal correlation between audio-video pairs and multimodal correlation overwriting that forgets audio-video relations. To tackle this problem, we propose a new continual audio-video pre-training method with two novel ideas: (1) Localized Patch Importance Scoring: we introduce a multimodal encoder to determine the importance score for each patch, emphasizing semantically intertwined audio-video patches. (2) Replay-guided Correlation Assessment: to reduce the corruption of previously learned audiovisual knowledge due to drift, we propose to assess the correlation of the current patches on the past steps to identify the patches exhibiting high correlations with the past steps. Based on the results from the two ideas, we perform probabilistic patch selection for effective continual audio-video pre-training. Experimental validation on multiple benchmarks shows that our method achieves a 3.69%p of relative performance gain in zero-shot retrieval tasks compared to strong continual learning baselines, while reducing memory consumption by ~45%.
Implementing fine-grained emotion control is crucial for emotion generation tasks because it enhances the expressive capability of the generative model, allowing it to accurately and comprehensively capture and express various nuanced emotional states, thereby improving the emotional quality and personalization of generated content. Generating fine-grained facial animations that accurately portray emotional expressions using only a portrait and an audio recording presents a challenge. In order to address this challenge, we propose a visual attribute-guided audio decoupler. This enables the obtention of content vectors solely related to the audio content, enhancing the stability of subsequent lip movement coefficient predictions. To achieve more precise emotional expression, we introduce a fine-grained emotion coefficient prediction module. Additionally, we propose an emotion intensity control method using a fine-grained emotion matrix. Through these, effective control over emotional expression in the generated videos and finer classification of emotion intensity are accomplished. Subsequently, a series of 3DMM coefficient generation networks are designed to predict 3D coefficients, followed by the utilization of a rendering network to generate the final video. Our experimental results demonstrate that our proposed method, EmoSpeaker, outperforms existing emotional talking face generation methods in terms of expression variation and lip synchronization. Project page: //peterfanfan.github.io/EmoSpeaker/
Semantic segmentation is a fundamental visual task that finds extensive deployment in applications with security-sensitive considerations. Nonetheless, recent work illustrates the adversarial vulnerability of semantic segmentation models to white-box attacks. However, its adversarial robustness against black-box attacks has not been fully explored. In this paper, we present the first exploration of black-box decision-based attacks on semantic segmentation. First, we analyze the challenges that semantic segmentation brings to decision-based attacks through the case study. Then, to address these challenges, we first propose a decision-based attack on semantic segmentation, called Discrete Linear Attack (DLA). Based on random search and proxy index, we utilize the discrete linear noises for perturbation exploration and calibration to achieve efficient attack efficiency. We conduct adversarial robustness evaluation on 5 models from Cityscapes and ADE20K under 8 attacks. DLA shows its formidable power on Cityscapes by dramatically reducing PSPNet's mIoU from an impressive 77.83% to a mere 2.14% with just 50 queries.
Vulnerability analysis is crucial for software security. This work focuses on using pre-training techniques to enhance the understanding of vulnerable code and boost vulnerability analysis. The code understanding ability of a pre-trained model is highly related to its pre-training objectives. The semantic structure, e.g., control and data dependencies, of code is important for vulnerability analysis. However, existing pre-training objectives either ignore such structure or focus on learning to use it. The feasibility and benefits of learning the knowledge of analyzing semantic structure have not been investigated. To this end, this work proposes two novel pre-training objectives, namely Control Dependency Prediction (CDP) and Data Dependency Prediction (DDP), which aim to predict the statement-level control dependencies and token-level data dependencies, respectively, in a code snippet only based on its source code. During pre-training, CDP and DDP can guide the model to learn the knowledge required for analyzing fine-grained dependencies in code. After pre-training, the pre-trained model can boost the understanding of vulnerable code during fine-tuning and can directly be used to perform dependence analysis for both partial and complete functions. To demonstrate the benefits of our pre-training objectives, we pre-train a Transformer model named PDBERT with CDP and DDP, fine-tune it on three vulnerability analysis tasks, i.e., vulnerability detection, vulnerability classification, and vulnerability assessment, and also evaluate it on program dependence analysis. Experimental results show that PDBERT benefits from CDP and DDP, leading to state-of-the-art performance on the three downstream tasks. Also, PDBERT achieves F1-scores of over 99% and 94% for predicting control and data dependencies, respectively, in partial and complete functions.
In the past few years, the emergence of pre-training models has brought uni-modal fields such as computer vision (CV) and natural language processing (NLP) to a new era. Substantial works have shown they are beneficial for downstream uni-modal tasks and avoid training a new model from scratch. So can such pre-trained models be applied to multi-modal tasks? Researchers have explored this problem and made significant progress. This paper surveys recent advances and new frontiers in vision-language pre-training (VLP), including image-text and video-text pre-training. To give readers a better overall grasp of VLP, we first review its recent advances from five aspects: feature extraction, model architecture, pre-training objectives, pre-training datasets, and downstream tasks. Then, we summarize the specific VLP models in detail. Finally, we discuss the new frontiers in VLP. To the best of our knowledge, this is the first survey on VLP. We hope that this survey can shed light on future research in the VLP field.
Spatio-temporal representation learning is critical for video self-supervised representation. Recent approaches mainly use contrastive learning and pretext tasks. However, these approaches learn representation by discriminating sampled instances via feature similarity in the latent space while ignoring the intermediate state of the learned representations, which limits the overall performance. In this work, taking into account the degree of similarity of sampled instances as the intermediate state, we propose a novel pretext task - spatio-temporal overlap rate (STOR) prediction. It stems from the observation that humans are capable of discriminating the overlap rates of videos in space and time. This task encourages the model to discriminate the STOR of two generated samples to learn the representations. Moreover, we employ a joint optimization combining pretext tasks with contrastive learning to further enhance the spatio-temporal representation learning. We also study the mutual influence of each component in the proposed scheme. Extensive experiments demonstrate that our proposed STOR task can favor both contrastive learning and pretext tasks. The joint optimization scheme can significantly improve the spatio-temporal representation in video understanding. The code is available at //github.com/Katou2/CSTP.
Conventional entity typing approaches are based on independent classification paradigms, which make them difficult to recognize inter-dependent, long-tailed and fine-grained entity types. In this paper, we argue that the implicitly entailed extrinsic and intrinsic dependencies between labels can provide critical knowledge to tackle the above challenges. To this end, we propose \emph{Label Reasoning Network(LRN)}, which sequentially reasons fine-grained entity labels by discovering and exploiting label dependencies knowledge entailed in the data. Specifically, LRN utilizes an auto-regressive network to conduct deductive reasoning and a bipartite attribute graph to conduct inductive reasoning between labels, which can effectively model, learn and reason complex label dependencies in a sequence-to-set, end-to-end manner. Experiments show that LRN achieves the state-of-the-art performance on standard ultra fine-grained entity typing benchmarks, and can also resolve the long tail label problem effectively.
Recently pre-trained language representation models such as BERT have shown great success when fine-tuned on downstream tasks including information retrieval (IR). However, pre-training objectives tailored for ad-hoc retrieval have not been well explored. In this paper, we propose Pre-training with Representative wOrds Prediction (PROP) for ad-hoc retrieval. PROP is inspired by the classical statistical language model for IR, specifically the query likelihood model, which assumes that the query is generated as the piece of text representative of the "ideal" document. Based on this idea, we construct the representative words prediction (ROP) task for pre-training. Given an input document, we sample a pair of word sets according to the document language model, where the set with higher likelihood is deemed as more representative of the document. We then pre-train the Transformer model to predict the pairwise preference between the two word sets, jointly with the Masked Language Model (MLM) objective. By further fine-tuning on a variety of representative downstream ad-hoc retrieval tasks, PROP achieves significant improvements over baselines without pre-training or with other pre-training methods. We also show that PROP can achieve exciting performance under both the zero- and low-resource IR settings. The code and pre-trained models are available at //github.com/Albert-Ma/PROP.
Recent work pre-training Transformers with self-supervised objectives on large text corpora has shown great success when fine-tuned on downstream NLP tasks including text summarization. However, pre-training objectives tailored for abstractive text summarization have not been explored. Furthermore there is a lack of systematic evaluation across diverse domains. In this work, we propose pre-training large Transformer-based encoder-decoder models on massive text corpora with a new self-supervised objective. In PEGASUS, important sentences are removed/masked from an input document and are generated together as one output sequence from the remaining sentences, similar to an extractive summary. We evaluated our best PEGASUS model on 12 downstream summarization tasks spanning news, science, stories, instructions, emails, patents, and legislative bills. Experiments demonstrate it achieves state-of-the-art performance on all 12 downstream datasets measured by ROUGE scores. Our model also shows surprising performance on low-resource summarization, surpassing previous state-of-the-art results on 6 datasets with only 1000 examples. Finally we validated our results using human evaluation and show that our model summaries achieve human performance on multiple datasets.