亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Minimum Snap Trajectory Generation and Control for an Under-actuated Flapping Wing Aerial VehicleThis paper presents both the trajectory generation and tracking control strategies for an underactuated flapping wing aerial vehicle (FWAV). First, the FWAV dynamics is analyzed in a practical perspective. Then, based on these analyses, we demonstrate the differential flatness of the FWAV system, and develop a general-purpose trajectory generation strategy. Subsequently, the trajectory tracking controller is developed with the help of robust control and switch control techniques. After that, the overall system asymptotic stability is guaranteed by Lyapunov stability analysis. To make the controller applicable in real flight, we also provide several instructions. Finally, a series of experiment results manifest the successful implementation of the proposed trajectory generation strategy and tracking control strategy. This work firstly achieves the closed-loop integration of trajectory generation and control for real 3-dimensional flight of an underactuated FWAV to a practical level.

相關內容

This paper focuses on the Audio-Visual Question Answering (AVQA) task that aims to answer questions derived from untrimmed audible videos. To generate accurate answers, an AVQA model is expected to find the most informative audio-visual clues relevant to the given questions. In this paper, we propose to explicitly consider fine-grained visual objects in video frames (object-level clues) and explore the multi-modal relations(i.e., the object, audio, and question) in terms of feature interaction and model optimization. For the former, we present an end-to-end object-oriented network that adopts a question-conditioned clue discovery module to concentrate audio/visual modalities on respective keywords of the question and designs a modality-conditioned clue collection module to highlight closely associated audio segments or visual objects. For model optimization, we propose an object-aware adaptive-positivity learning strategy that selects the highly semantic-matched multi-modal pair as positivity. Specifically, we design two object-aware contrastive loss functions to identify the highly relevant question-object pairs and audio-object pairs, respectively. These selected pairs are constrained to have larger similarity values than the mismatched pairs. The positivity-selecting process is adaptive as the positivity pairs selected in each video frame may be different. These two object-aware objectives help the model understand which objects are exactly relevant to the question and which are making sounds. Extensive experiments on the MUSIC-AVQA dataset demonstrate the proposed method is effective in finding favorable audio-visual clues and also achieves new state-of-the-art question-answering performance.

This paper presents novel techniques for enhancing the performance of knowledge tracing (KT) models by focusing on the crucial factor of question and concept difficulty level. Despite the acknowledged significance of difficulty, previous KT research has yet to exploit its potential for model optimization and has struggled to predict difficulty from unseen data. To address these problems, we propose a difficulty-centered contrastive learning method for KT models and a Large Language Model (LLM)-based framework for difficulty prediction. These innovative methods seek to improve the performance of KT models and provide accurate difficulty estimates for unseen data. Our ablation study demonstrates the efficacy of these techniques by demonstrating enhanced KT model performance. Nonetheless, the complex relationship between language and difficulty merits further investigation.

This review paper explores Multimodal Large Language Models (MLLMs), which integrate Large Language Models (LLMs) like GPT-4 to handle multimodal data such as text and vision. MLLMs demonstrate capabilities like generating image narratives and answering image-based questions, bridging the gap towards real-world human-computer interactions and hinting at a potential pathway to artificial general intelligence. However, MLLMs still face challenges in processing the semantic gap in multimodality, which may lead to erroneous generation, posing potential risks to society. Choosing the appropriate modality alignment method is crucial, as improper methods might require more parameters with limited performance improvement. This paper aims to explore modality alignment methods for LLMs and their existing capabilities. Implementing modality alignment allows LLMs to address environmental issues and enhance accessibility. The study surveys existing modal alignment methods in MLLMs into four groups: (1) Multimodal Converters that change data into something LLMs can understand; (2) Multimodal Perceivers to improve how LLMs perceive different types of data; (3) Tools Assistance for changing data into one common format, usually text; and (4) Data-Driven methods that teach LLMs to understand specific types of data in a dataset. This field is still in a phase of exploration and experimentation, and we will organize and update various existing research methods for multimodal information alignment.

Generative AI (GenAI) systems offer unprecedented opportunities for transforming professional and personal work, yet present challenges around prompting, evaluating and relying on outputs, and optimizing workflows. We argue that metacognition$\unicode{x2013}$the psychological ability to monitor and control one's thoughts and behavior$\unicode{x2013}$offers a valuable lens to understand and design for these usability challenges. Drawing on research in psychology and cognitive science, and recent GenAI user studies, we illustrate how GenAI systems impose metacognitive demands on users, requiring a high degree of metacognitive monitoring and control. We propose these demands could be addressed by integrating metacognitive support strategies into GenAI systems, and by designing GenAI systems to reduce their metacognitive demand by targeting explainability and customizability. Metacognition offers a coherent framework for understanding the usability challenges posed by GenAI, enabling us to offer research and design directions to advance human-GenAI interaction.

This paper presents a novel two-part pipeline for monitoring progress towards the UN Sustainable Development Goals (SDG's) related to Climate Action and Sustainable Cities and Communities. The pipeline consists of two main parts: the first part takes a raw satellite image of a motorway section and produces traffic count predictions for count sites within the image; the second part takes these predicted traffic counts and other variables to produce estimates of Local Authority (LA) motorway Average Annual Daily Traffic (AADT) and Greenhouse Gas (GHG) emissions on a per vehicle type basis. We also provide flexibility to the pipeline by implementing a novel method for estimating emissions when data on AADT per vehicle type or/and live vehicle speeds are not available. Finally, we extend the pipeline to also estimate LA A-Roads and minor roads AADT and GHG emissions. We treat the 2017 year as training and 2018 as the test year. Results show that it is possible to predict AADT and GHG emissions from satellite imagery, with motorway test year $R^2$ values of 0.92 and 0.78 respectively, and for A-roads' $R^2$ values of 0.94 and 0.98. This end-to-end two-part pipeline builds upon and combines previous research in road transportation traffic flows, speed estimation from satellite imagery, and emissions estimation, providing new contributions and insights into these areas.

Centered around solving the Online Saddle Point problem, this paper introduces the Online Convex-Concave Optimization (OCCO) framework, which involves a sequence of two-player time-varying convex-concave games. We propose the generalized duality gap (Dual-Gap) as the performance metric and establish the parallel relationship between OCCO with Dual-Gap and Online Convex Optimization (OCO) with regret. To demonstrate the natural extension of OCCO from OCO, we develop two algorithms, the implicit online mirror descent-ascent and its optimistic variant. Analysis reveals that their duality gaps share similar expression forms with the corresponding dynamic regrets arising from implicit updates in OCO. Empirical results further substantiate the effectiveness of our algorithms. Simultaneously, we unveil that the dynamic Nash equilibrium regret, which was initially introduced in a recent paper, has inherent defects.

Pre-trained Language Models (PLMs) have achieved great success in various Natural Language Processing (NLP) tasks under the pre-training and fine-tuning paradigm. With large quantities of parameters, PLMs are computation-intensive and resource-hungry. Hence, model pruning has been introduced to compress large-scale PLMs. However, most prior approaches only consider task-specific knowledge towards downstream tasks, but ignore the essential task-agnostic knowledge during pruning, which may cause catastrophic forgetting problem and lead to poor generalization ability. To maintain both task-agnostic and task-specific knowledge in our pruned model, we propose ContrAstive Pruning (CAP) under the paradigm of pre-training and fine-tuning. It is designed as a general framework, compatible with both structured and unstructured pruning. Unified in contrastive learning, CAP enables the pruned model to learn from the pre-trained model for task-agnostic knowledge, and fine-tuned model for task-specific knowledge. Besides, to better retain the performance of the pruned model, the snapshots (i.e., the intermediate models at each pruning iteration) also serve as effective supervisions for pruning. Our extensive experiments show that adopting CAP consistently yields significant improvements, especially in extremely high sparsity scenarios. With only 3% model parameters reserved (i.e., 97% sparsity), CAP successfully achieves 99.2% and 96.3% of the original BERT performance in QQP and MNLI tasks. In addition, our probing experiments demonstrate that the model pruned by CAP tends to achieve better generalization ability.

In this paper, we propose a novel Feature Decomposition and Reconstruction Learning (FDRL) method for effective facial expression recognition. We view the expression information as the combination of the shared information (expression similarities) across different expressions and the unique information (expression-specific variations) for each expression. More specifically, FDRL mainly consists of two crucial networks: a Feature Decomposition Network (FDN) and a Feature Reconstruction Network (FRN). In particular, FDN first decomposes the basic features extracted from a backbone network into a set of facial action-aware latent features to model expression similarities. Then, FRN captures the intra-feature and inter-feature relationships for latent features to characterize expression-specific variations, and reconstructs the expression feature. To this end, two modules including an intra-feature relation modeling module and an inter-feature relation modeling module are developed in FRN. Experimental results on both the in-the-lab databases (including CK+, MMI, and Oulu-CASIA) and the in-the-wild databases (including RAF-DB and SFEW) show that the proposed FDRL method consistently achieves higher recognition accuracy than several state-of-the-art methods. This clearly highlights the benefit of feature decomposition and reconstruction for classifying expressions.

Automatic KB completion for commonsense knowledge graphs (e.g., ATOMIC and ConceptNet) poses unique challenges compared to the much studied conventional knowledge bases (e.g., Freebase). Commonsense knowledge graphs use free-form text to represent nodes, resulting in orders of magnitude more nodes compared to conventional KBs (18x more nodes in ATOMIC compared to Freebase (FB15K-237)). Importantly, this implies significantly sparser graph structures - a major challenge for existing KB completion methods that assume densely connected graphs over a relatively smaller set of nodes. In this paper, we present novel KB completion models that can address these challenges by exploiting the structural and semantic context of nodes. Specifically, we investigate two key ideas: (1) learning from local graph structure, using graph convolutional networks and automatic graph densification and (2) transfer learning from pre-trained language models to knowledge graphs for enhanced contextual representation of knowledge. We describe our method to incorporate information from both these sources in a joint model and provide the first empirical results for KB completion on ATOMIC and evaluation with ranking metrics on ConceptNet. Our results demonstrate the effectiveness of language model representations in boosting link prediction performance and the advantages of learning from local graph structure (+1.5 points in MRR for ConceptNet) when training on subgraphs for computational efficiency. Further analysis on model predictions shines light on the types of commonsense knowledge that language models capture well.

In this paper, we introduce the Reinforced Mnemonic Reader for machine reading comprehension tasks, which enhances previous attentive readers in two aspects. First, a reattention mechanism is proposed to refine current attentions by directly accessing to past attentions that are temporally memorized in a multi-round alignment architecture, so as to avoid the problems of attention redundancy and attention deficiency. Second, a new optimization approach, called dynamic-critical reinforcement learning, is introduced to extend the standard supervised method. It always encourages to predict a more acceptable answer so as to address the convergence suppression problem occurred in traditional reinforcement learning algorithms. Extensive experiments on the Stanford Question Answering Dataset (SQuAD) show that our model achieves state-of-the-art results. Meanwhile, our model outperforms previous systems by over 6% in terms of both Exact Match and F1 metrics on two adversarial SQuAD datasets.

北京阿比特科技有限公司