亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Nowadays, data is represented by vectors. Retrieving those vectors, among millions and billions, that are similar to a given query is a ubiquitous problem, known as similarity search, of relevance for a wide range of applications. Graph-based indices are currently the best performing techniques for billion-scale similarity search. However, their random-access memory pattern presents challenges to realize their full potential. In this work, we present new techniques and systems for creating faster and smaller graph-based indices. To this end, we introduce a novel vector compression method, Locally-adaptive Vector Quantization (LVQ), that uses per-vector scaling and scalar quantization to improve search performance with fast similarity computations and a reduced effective bandwidth, while decreasing memory footprint and barely impacting accuracy. LVQ, when combined with a new high-performance computing system for graph-based similarity search, establishes the new state of the art in terms of performance and memory footprint. For billions of vectors, LVQ outcompetes the second-best alternatives: (1) in the low-memory regime, by up to 20.7x in throughput with up to a 3x memory footprint reduction, and (2) in the high-throughput regime by 5.8x with 1.4x less memory.

相關內容

We address the problem of efficient and unobstructed surveillance or communication in complex environments. On one hand, one wishes to use a minimal number of sensors to cover the environment. On the other hand, it is often important to consider solutions that are robust against sensor failure or adversarial attacks. This paper addresses these challenges of designing minimal sensor sets that achieve multi-coverage constraints -- every point in the environment is covered by a prescribed number of sensors. We propose a greedy algorithm to achieve the objective. Further, we explore deep learning techniques to accelerate the evaluation of the objective function formulated in the greedy algorithm. The training of the neural network reveals that the geometric properties of the data significantly impact the network's performance, particularly at the end stage. By taking into account these properties, we discuss the differences in using greedy and $\epsilon$-greedy algorithms to generate data and their impact on the robustness of the network.

While feedback loops are known to play important roles in many complex systems, their existence is ignored in a large part of the causal discovery literature, as systems are typically assumed to be acyclic from the outset. When applying causal discovery algorithms designed for the acyclic setting on data generated by a system that involves feedback, one would not expect to obtain correct results. In this work, we show that -- surprisingly -- the output of the Fast Causal Inference (FCI) algorithm is correct if it is applied to observational data generated by a system that involves feedback. More specifically, we prove that for observational data generated by a simple and $\sigma$-faithful Structural Causal Model (SCM), FCI is sound and complete, and can be used to consistently estimate (i) the presence and absence of causal relations, (ii) the presence and absence of direct causal relations, (iii) the absence of confounders, and (iv) the absence of specific cycles in the causal graph of the SCM. We extend these results to constraint-based causal discovery algorithms that exploit certain forms of background knowledge, including the causally sufficient setting (e.g., the PC algorithm) and the Joint Causal Inference setting (e.g., the FCI-JCI algorithm).

Optimal transport and Wasserstein distances are flourishing in many scientific fields as a means for comparing and connecting random structures. Here we pioneer the use of an optimal transport distance between L\'{e}vy measures to solve a statistical problem. Dependent Bayesian nonparametric models provide flexible inference on distinct, yet related, groups of observations. Each component of a vector of random measures models a group of exchangeable observations, while their dependence regulates the borrowing of information across groups. We derive the first statistical index of dependence in $[0,1]$ for (completely) random measures that accounts for their whole infinite-dimensional distribution, which is assumed to be equal across different groups. This is accomplished by using the geometric properties of the Wasserstein distance to solve a max-min problem at the level of the underlying L\'{e}vy measures. The Wasserstein index of dependence sheds light on the models' deep structure and has desirable properties: (i) it is $0$ if and only if the random measures are independent; (ii) it is $1$ if and only if the random measures are completely dependent; (iii) it simultaneously quantifies the dependence of $d \ge 2$ random measures, avoiding the need for pairwise comparisons; (iv) it can be evaluated numerically. Moreover, the index allows for informed prior specifications and fair model comparisons for Bayesian nonparametric models.

In indoor scenes, reverberation is a crucial factor in degrading the perceived quality and intelligibility of speech. In this work, we propose a generative dereverberation method. Our approach is based on a probabilistic model utilizing a recurrent variational auto-encoder (RVAE) network and the convolutive transfer function (CTF) approximation. Different from most previous approaches, the output of our RVAE serves as the prior of the clean speech. And our target is the maximum a posteriori (MAP) estimation of clean speech, which is achieved iteratively through the expectation maximization (EM) algorithm. The proposed method integrates the capabilities of network-based speech prior modelling and CTF-based observation modelling. Experiments on single-channel speech dereverberation show that the proposed generative method noticeably outperforms the advanced discriminative networks.

Telemanipulation has become a promising technology that combines human intelligence with robotic capabilities to perform tasks remotely. However, it faces several challenges such as insufficient transparency, low immersion, and limited feedback to the human operator. Moreover, the high cost of haptic interfaces is a major limitation for the application of telemanipulation in various fields, including elder care, where our research is focused. To address these challenges, this paper proposes the usage of nonlinear model predictive control for telemanipulation using low-cost virtual reality controllers, including multiple control goals in the objective function. The framework utilizes models for human input prediction and taskrelated models of the robot and the environment. The proposed framework is validated on an UR5e robot arm in the scenario of handling liquid without spilling. Further extensions of the framework such as pouring assistance and collision avoidance can easily be included.

Next Point-of-Interest (POI) recommendation is a critical task in location-based services that aim to provide personalized suggestions for the user's next destination. Previous works on POI recommendation have laid focused on modeling the user's spatial preference. However, existing works that leverage spatial information are only based on the aggregation of users' previous visited positions, which discourages the model from recommending POIs in novel areas. This trait of position-based methods will harm the model's performance in many situations. Additionally, incorporating sequential information into the user's spatial preference remains a challenge. In this paper, we propose Diff-POI: a Diffusion-based model that samples the user's spatial preference for the next POI recommendation. Inspired by the wide application of diffusion algorithm in sampling from distributions, Diff-POI encodes the user's visiting sequence and spatial character with two tailor-designed graph encoding modules, followed by a diffusion-based sampling strategy to explore the user's spatial visiting trends. We leverage the diffusion process and its reversed form to sample from the posterior distribution and optimized the corresponding score function. We design a joint training and inference framework to optimize and evaluate the proposed Diff-POI. Extensive experiments on four real-world POI recommendation datasets demonstrate the superiority of our Diff-POI over state-of-the-art baseline methods. Further ablation and parameter studies on Diff-POI reveal the functionality and effectiveness of the proposed diffusion-based sampling strategy for addressing the limitations of existing methods.

The autologistic actor attribute model, or ALAAM, is the social influence counterpart of the better-known exponential-family random graph model (ERGM) for social selection. Extensive experience with ERGMs has shown that the problem of near-degeneracy which often occurs with simple models can be overcome by using "geometrically weighted" or "alternating" statistics. In the much more limited empirical applications of ALAAMs to date, the problem of near-degeneracy, although theoretically expected, appears to have been less of an issue. In this work I present a comprehensive survey of ALAAM applications, showing that this model has to date only been used with relatively small networks, in which near-degeneracy does not appear to be a problem. I show near-degeneracy does occur in simple ALAAM models of larger empirical networks, define some geometrically weighted ALAAM statistics analogous to those for ERGM, and demonstrate that models with these statistics do not suffer from near-degeneracy and hence can be estimated where they could not be with the simple statistics.

Data pipelines are an integral part of various modern data-driven systems. However, despite their importance, they are often unreliable and deliver poor-quality data. A critical step toward improving this situation is a solid understanding of the aspects contributing to the quality of data pipelines. Therefore, this article first introduces a taxonomy of 41 factors that influence the ability of data pipelines to provide quality data. The taxonomy is based on a multivocal literature review and validated by eight interviews with experts from the data engineering domain. Data, infrastructure, life cycle management, development & deployment, and processing were found to be the main influencing themes. Second, we investigate the root causes of data-related issues, their location in data pipelines, and the main topics of data pipeline processing issues for developers by mining GitHub projects and Stack Overflow posts. We found data-related issues to be primarily caused by incorrect data types (33%), mainly occurring in the data cleaning stage of pipelines (35%). Data integration and ingestion tasks were found to be the most asked topics of developers, accounting for nearly half (47%) of all questions. Compatibility issues were found to be a separate problem area in addition to issues corresponding to the usual data pipeline processing areas (i.e., data loading, ingestion, integration, cleaning, and transformation). These findings suggest that future research efforts should focus on analyzing compatibility and data type issues in more depth and assisting developers in data integration and ingestion tasks. The proposed taxonomy is valuable to practitioners in the context of quality assurance activities and fosters future research into data pipeline quality.

Graph Neural Networks (GNNs) have emerged as one of the leading approaches for machine learning on graph-structured data. Despite their great success, critical computational challenges such as over-smoothing, over-squashing, and limited expressive power continue to impact the performance of GNNs. In this study, inspired from the time-reversal principle commonly utilized in classical and quantum physics, we reverse the time direction of the graph heat equation. The resulted reversing process yields a class of high pass filtering functions that enhance the sharpness of graph node features. Leveraging this concept, we introduce the Multi-Scaled Heat Kernel based GNN (MHKG) by amalgamating diverse filtering functions' effects on node features. To explore more flexible filtering conditions, we further generalize MHKG into a model termed G-MHKG and thoroughly show the roles of each element in controlling over-smoothing, over-squashing and expressive power. Notably, we illustrate that all aforementioned issues can be characterized and analyzed via the properties of the filtering functions, and uncover a trade-off between over-smoothing and over-squashing: enhancing node feature sharpness will make model suffer more from over-squashing, and vice versa. Furthermore, we manipulate the time again to show how G-MHKG can handle both two issues under mild conditions. Our conclusive experiments highlight the effectiveness of proposed models. It surpasses several GNN baseline models in performance across graph datasets characterized by both homophily and heterophily.

This paper does not describe a working system. Instead, it presents a single idea about representation which allows advances made by several different groups to be combined into an imaginary system called GLOM. The advances include transformers, neural fields, contrastive representation learning, distillation and capsules. GLOM answers the question: How can a neural network with a fixed architecture parse an image into a part-whole hierarchy which has a different structure for each image? The idea is simply to use islands of identical vectors to represent the nodes in the parse tree. If GLOM can be made to work, it should significantly improve the interpretability of the representations produced by transformer-like systems when applied to vision or language

北京阿比特科技有限公司