With the growing importance of preventing the COVID-19 virus, face images obtained in most video surveillance scenarios are low resolution with mask simultaneously. However, most of the previous face super-resolution solutions can not handle both tasks in one model. In this work, we treat the mask occlusion as image noise and construct a joint and collaborative learning network, called JDSR-GAN, for the masked face super-resolution task. Given a low-quality face image with the mask as input, the role of the generator composed of a denoising module and super-resolution module is to acquire a high-quality high-resolution face image. The discriminator utilizes some carefully designed loss functions to ensure the quality of the recovered face images. Moreover, we incorporate the identity information and attention mechanism into our network for feasible correlated feature expression and informative feature learning. By jointly performing denoising and face super-resolution, the two tasks can complement each other and attain promising performance. Extensive qualitative and quantitative results show the superiority of our proposed JDSR-GAN over some comparable methods which perform the previous two tasks separately.
The channel attention mechanism is a useful technique widely employed in deep convolutional neural networks to boost the performance for image processing tasks, eg, image classification and image super-resolution. It is usually designed as a parameterized sub-network and embedded into the convolutional layers of the network to learn more powerful feature representations. However, current channel attention induces more parameters and therefore leads to higher computational costs. To deal with this issue, in this work, we propose a Parameter-Free Channel Attention (PFCA) module to boost the performance of popular image classification and image super-resolution networks, but completely sweep out the parameter growth of channel attention. Experiments on CIFAR-100, ImageNet, and DIV2K validate that our PFCA module improves the performance of ResNet on image classification and improves the performance of MSRResNet on image super-resolution tasks, respectively, while bringing little growth of parameters and FLOPs.
We study the problem of estimating optical flow from event cameras. One important issue is how to build a high-quality event-flow dataset with accurate event values and flow labels. Previous datasets are created by either capturing real scenes by event cameras or synthesizing from images with pasted foreground objects. The former case can produce real event values but with calculated flow labels, which are sparse and inaccurate. The later case can generate dense flow labels but the interpolated events are prone to errors. In this work, we propose to render a physically correct event-flow dataset using computer graphics models. In particular, we first create indoor and outdoor 3D scenes by Blender with rich scene content variations. Second, diverse camera motions are included for the virtual capturing, producing images and accurate flow labels. Third, we render high-framerate videos between images for accurate events. The rendered dataset can adjust the density of events, based on which we further introduce an adaptive density module (ADM). Experiments show that our proposed dataset can facilitate event-flow learning, whereas previous approaches when trained on our dataset can improve their performances constantly by a relatively large margin. In addition, event-flow pipelines when equipped with our ADM can further improve performances.
Body weight, as an essential physiological trait, is of considerable significance in many applications like body management, rehabilitation, and drug dosing for patient-specific treatments. Previous works on the body weight estimation task are mainly vision-based, using 2D/3D, depth, or infrared images, facing problems in illumination, occlusions, and especially privacy issues. The pressure mapping mattress is a non-invasive and privacy-preserving tool to obtain the pressure distribution image over the bed surface, which strongly correlates with the body weight of the lying person. To extract the body weight from this image, we propose a deep learning-based model, including a dual-branch network to extract the deep features and pose features respectively. A contrastive learning module is also combined with the deep-feature branch to help mine the mutual factors across different postures of every single subject. The two groups of features are then concatenated for the body weight regression task. To test the model's performance over different hardware and posture settings, we create a pressure image dataset of 10 subjects and 23 postures, using a self-made pressure-sensing bedsheet. This dataset, which is made public together with this paper, together with a public dataset, are used for the validation. The results show that our model outperforms the state-of-the-art algorithms over both 2 datasets. Our research constitutes an important step toward fully automatic weight estimation in both clinical and at-home practice. Our dataset is available for research purposes at: //github.com/USTCWzy/MassEstimation.
With well-selected data, homogeneous diffusion inpainting can reconstruct images from sparse data with high quality. While 4K colour images of size 3840 x 2160 can already be inpainted in real time, optimising the known data for applications like image compression remains challenging: Widely used stochastic strategies can take days for a single 4K image. Recently, a first neural approach for this so-called mask optimisation problem offered high speed and good quality for small images. It trains a mask generation network with the help of a neural inpainting surrogate. However, these mask networks can only output masks for the resolution and mask density they were trained for. We solve these problems and enable mask optimisation for high-resolution images through a neuroexplicit coarse-to-fine strategy. Additionally, we improve the training and interpretability of mask networks by including a numerical inpainting solver directly into the network. This allows to generate masks for 4K images in around 0.6 seconds while exceeding the quality of stochastic methods on practically relevant densities. Compared to popular existing approaches, this is an acceleration of up to four orders of magnitude.
In this paper, a new feature selection algorithm, called SFE (Simple, Fast, and Efficient), is proposed for high-dimensional datasets. The SFE algorithm performs its search process using a search agent and two operators: non-selection and selection. It comprises two phases: exploration and exploitation. In the exploration phase, the non-selection operator performs a global search in the entire problem search space for the irrelevant, redundant, trivial, and noisy features, and changes the status of the features from selected mode to non-selected mode. In the exploitation phase, the selection operator searches the problem search space for the features with a high impact on the classification results, and changes the status of the features from non-selected mode to selected mode. The proposed SFE is successful in feature selection from high-dimensional datasets. However, after reducing the dimensionality of a dataset, its performance cannot be increased significantly. In these situations, an evolutionary computational method could be used to find a more efficient subset of features in the new and reduced search space. To overcome this issue, this paper proposes a hybrid algorithm, SFE-PSO (particle swarm optimization) to find an optimal feature subset. The efficiency and effectiveness of the SFE and the SFE-PSO for feature selection are compared on 40 high-dimensional datasets. Their performances were compared with six recently proposed feature selection algorithms. The results obtained indicate that the two proposed algorithms significantly outperform the other algorithms, and can be used as efficient and effective algorithms in selecting features from high-dimensional datasets.
Objects rarely sit in isolation in human environments. As such, we'd like our robots to reason about how multiple objects relate to one another and how those relations may change as the robot interacts with the world. To this end, we propose a novel graph neural network framework for multi-object manipulation to predict how inter-object relations change given robot actions. Our model operates on partial-view point clouds and can reason about multiple objects dynamically interacting during the manipulation. By learning a dynamics model in a learned latent graph embedding space, our model enables multi-step planning to reach target goal relations. We show our model trained purely in simulation transfers well to the real world. Our planner enables the robot to rearrange a variable number of objects with a range of shapes and sizes using both push and pick and place skills.
Using generated data to improve the performance of downstream discriminative models has recently gained popularity due to the great development of pre-trained language models. In most previous studies, generative models and discriminative models are trained separately and thus could not adapt to any changes in each other. As a result, the generated samples can easily deviate from the real data distribution, while the improvement of the discriminative model quickly reaches saturation. Generative adversarial networks (GANs) train generative models via an adversarial process with discriminative models to achieve joint training. However, the training of standard GANs is notoriously unstable and often falls short of convergence. In this paper, to address these issues, we propose a $\textit{self-consistent learning}$ framework, in which a discriminator and a generator are cooperatively trained in a closed-loop form. The discriminator and the generator enhance each other during multiple rounds of alternating training until a scoring consensus is reached. This framework proves to be easy to train and free from instabilities such as mode collapse and non-convergence. Extensive experiments on sentence semantic matching demonstrate the effectiveness of the proposed framework: the discriminator achieves 10+ AP of improvement on the zero-shot setting and new state-of-the-art performance on the full-data setting.
Contrastive loss has been increasingly used in learning representations from multiple modalities. In the limit, the nature of the contrastive loss encourages modalities to exactly match each other in the latent space. Yet it remains an open question how the modality alignment affects the downstream task performance. In this paper, based on an information-theoretic argument, we first prove that exact modality alignment is sub-optimal in general for downstream prediction tasks. Hence we advocate that the key of better performance lies in meaningful latent modality structures instead of perfect modality alignment. To this end, we propose three general approaches to construct latent modality structures. Specifically, we design 1) a deep feature separation loss for intra-modality regularization; 2) a Brownian-bridge loss for inter-modality regularization; and 3) a geometric consistency loss for both intra- and inter-modality regularization. Extensive experiments are conducted on two popular multi-modal representation learning frameworks: the CLIP-based two-tower model and the ALBEF-based fusion model. We test our model on a variety of tasks including zero/few-shot image classification, image-text retrieval, visual question answering, visual reasoning, and visual entailment. Our method achieves consistent improvements over existing methods, demonstrating the effectiveness and generalizability of our proposed approach on latent modality structure regularization.
Answering questions that require reading texts in an image is challenging for current models. One key difficulty of this task is that rare, polysemous, and ambiguous words frequently appear in images, e.g., names of places, products, and sports teams. To overcome this difficulty, only resorting to pre-trained word embedding models is far from enough. A desired model should utilize the rich information in multiple modalities of the image to help understand the meaning of scene texts, e.g., the prominent text on a bottle is most likely to be the brand. Following this idea, we propose a novel VQA approach, Multi-Modal Graph Neural Network (MM-GNN). It first represents an image as a graph consisting of three sub-graphs, depicting visual, semantic, and numeric modalities respectively. Then, we introduce three aggregators which guide the message passing from one graph to another to utilize the contexts in various modalities, so as to refine the features of nodes. The updated nodes have better features for the downstream question answering module. Experimental evaluations show that our MM-GNN represents the scene texts better and obviously facilitates the performances on two VQA tasks that require reading scene texts.
Convolutional neural networks (CNNs) have shown dramatic improvements in single image super-resolution (SISR) by using large-scale external samples. Despite their remarkable performance based on the external dataset, they cannot exploit internal information within a specific image. Another problem is that they are applicable only to the specific condition of data that they are supervised. For instance, the low-resolution (LR) image should be a "bicubic" downsampled noise-free image from a high-resolution (HR) one. To address both issues, zero-shot super-resolution (ZSSR) has been proposed for flexible internal learning. However, they require thousands of gradient updates, i.e., long inference time. In this paper, we present Meta-Transfer Learning for Zero-Shot Super-Resolution (MZSR), which leverages ZSSR. Precisely, it is based on finding a generic initial parameter that is suitable for internal learning. Thus, we can exploit both external and internal information, where one single gradient update can yield quite considerable results. (See Figure 1). With our method, the network can quickly adapt to a given image condition. In this respect, our method can be applied to a large spectrum of image conditions within a fast adaptation process.