亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

There are many different forms of design knowledge that guide and shape a designer's ability to act and realize potential realities. Methods and schemas are examples of design knowledge commonly used by design researchers and designers alike. In this pictorial, we explore, engage, and describe the role of schemas as tools that can support design researchers in formulating methods to support design action, with our framing of method design specifically focused on ethical design complexity. We present four ways for method designers to engage with schema: 1) Systems to operationalize complex design constructs such as ethical design complexity through an A.E.I.O.YOU schema; 2) Classifiers to map existing methods and identify the possibility for new methods through descriptive semantic differentials; 3) Tools that enable the creation of methods that relate to one or more elements of the schema through creative departures from research to design; and 4) Interactive channels to playfully engage potential and new opportunities through schema interactivity.

相關內容

設計是對現有狀的一種重新認識和打破重組的過程,設計讓一切變得更美。

Transformer-based models have demonstrated exceptional performance across diverse domains, becoming the state-of-the-art solution for addressing sequential machine learning problems. Even though we have a general understanding of the fundamental components in the transformer architecture, little is known about how they operate or what are their expected dynamics. Recently, there has been an increasing interest in exploring the relationship between attention mechanisms and Hopfield networks, promising to shed light on the statistical physics of transformer networks. However, to date, the dynamical regimes of transformer-like models have not been studied in depth. In this paper, we address this gap by using methods for the study of asymmetric Hopfield networks in nonequilibrium regimes --namely path integral methods over generating functionals, yielding dynamics governed by concurrent mean-field variables. Assuming 1-bit tokens and weights, we derive analytical approximations for the behavior of large self-attention neural networks coupled to a softmax output, which become exact in the large limit size. Our findings reveal nontrivial dynamical phenomena, including nonequilibrium phase transitions associated with chaotic bifurcations, even for very simple configurations with a few encoded features and a very short context window. Finally, we discuss the potential of our analytic approach to improve our understanding of the inner workings of transformer models, potentially reducing computational training costs and enhancing model interpretability.

Audio language models have recently emerged as a promising approach for various audio generation tasks, relying on audio tokenizers to encode waveforms into sequences of discrete symbols. Audio tokenization often poses a necessary compromise between code bitrate and reconstruction accuracy. When dealing with low-bitrate audio codes, language models are constrained to process only a subset of the information embedded in the audio, which in turn restricts their generative capabilities. To circumvent these issues, we propose encoding audio as vector sequences in continuous space $\mathbb R^d$ and autoregressively generating these sequences using a decoder-only diffusion transformer (ARDiT). Our findings indicate that ARDiT excels in zero-shot text-to-speech and exhibits performance that compares to or even surpasses that of state-of-the-art models. High-bitrate continuous speech representation enables almost flawless reconstruction, allowing our model to achieve nearly perfect speech editing. Our experiments reveal that employing Integral Kullback-Leibler (IKL) divergence for distillation at each autoregressive step significantly boosts the perceived quality of the samples. Simultaneously, it condenses the iterative sampling process of the diffusion model into a single step. Furthermore, ARDiT can be trained to predict several continuous vectors in one step, significantly reducing latency during sampling. Impressively, one of our models can generate $170$ ms of $24$ kHz speech per evaluation step with minimal degradation in performance. Audio samples are available at //ardit-tts.github.io/ .

We propose a scheme leveraging reinforcement learning to engineer control fields for generating non-classical states. It is exemplified by the application to prepare spin-squeezed states for an open collective spin model where a linear control field is designed to govern the dynamics. The reinforcement learning agent determines the temporal sequence of control pulses, commencing from a coherent spin state in an environment characterized by dissipation and dephasing. Compared to the constant control scenario, this approach provides various control sequences maintaining collective spin squeezing and entanglement. It is observed that denser application of the control pulses enhances the performance of the outcomes. However, there is a minor enhancement in the performance by adding control actions. The proposed strategy demonstrates increased effectiveness for larger systems. Thermal excitations of the reservoir are detrimental to the control outcomes. Feasible experiments are suggested to implement this control proposal based on the comparison with the others. The extensions to continuous control problems and another quantum system are discussed. The replaceability of the reinforcement learning module is also emphasized. This research paves the way for its application in manipulating other quantum systems.

Diffusion models have become the most popular approach to deep generative modeling of images, largely due to their empirical performance and reliability. From a theoretical standpoint, a number of recent works~\cite{chen2022,chen2022improved,benton2023linear} have studied the iteration complexity of sampling, assuming access to an accurate diffusion model. In this work, we focus on understanding the \emph{sample complexity} of training such a model; how many samples are needed to learn an accurate diffusion model using a sufficiently expressive neural network? Prior work~\cite{BMR20} showed bounds polynomial in the dimension, desired Total Variation error, and Wasserstein error. We show an \emph{exponential improvement} in the dependence on Wasserstein error and depth, along with improved dependencies on other relevant parameters.

The ability to learn compact, high-quality, and easy-to-optimize representations for visual data is paramount to many applications such as novel view synthesis and 3D reconstruction. Recent work has shown substantial success in using tensor networks to design such compact and high-quality representations. However, the ability to optimize tensor-based representations, and in particular, the highly compact tensor train representation, is still lacking. This has prevented practitioners from deploying the full potential of tensor networks for visual data. To this end, we propose 'Prolongation Upsampling Tensor Train (PuTT)', a novel method for learning tensor train representations in a coarse-to-fine manner. Our method involves the prolonging or `upsampling' of a learned tensor train representation, creating a sequence of 'coarse-to-fine' tensor trains that are incrementally refined. We evaluate our representation along three axes: (1). compression, (2). denoising capability, and (3). image completion capability. To assess these axes, we consider the tasks of image fitting, 3D fitting, and novel view synthesis, where our method shows an improved performance compared to state-of-the-art tensor-based methods. For full results see our project webpage: //sebulo.github.io/PuTT_website/

Collage techniques are commonly used in visualization to organize a collection of geometric shapes, facilitating the representation of visual features holistically, as seen in word clouds or circular packing diagrams. Typically, packing methods rely on object-space optimization techniques, which often necessitate customizing the optimization process to suit the complexity of geometric primitives and the specific application requirements. In this paper, we introduce a versatile image-space collage technique designed to pack geometric elements into a given shape. Leveraging a differential renderer and image-space losses, our optimization process is highly efficient and can easily accommodate various loss functions. We demonstrate the diverse visual expressiveness of our approach across various visualization applications. The evaluation confirmed the benefits of our method in terms of both visual quality and time performance. The project page is //szuviz.github.io/pixel-space-collage-technique/.

This manuscript portrays optimization as a process. In many practical applications the environment is so complex that it is infeasible to lay out a comprehensive theoretical model and use classical algorithmic theory and mathematical optimization. It is necessary as well as beneficial to take a robust approach, by applying an optimization method that learns as one goes along, learning from experience as more aspects of the problem are observed. This view of optimization as a process has become prominent in varied fields and has led to some spectacular success in modeling and systems that are now part of our daily lives.

Contrastive learning models have achieved great success in unsupervised visual representation learning, which maximize the similarities between feature representations of different views of the same image, while minimize the similarities between feature representations of views of different images. In text summarization, the output summary is a shorter form of the input document and they have similar meanings. In this paper, we propose a contrastive learning model for supervised abstractive text summarization, where we view a document, its gold summary and its model generated summaries as different views of the same mean representation and maximize the similarities between them during training. We improve over a strong sequence-to-sequence text generation model (i.e., BART) on three different summarization datasets. Human evaluation also shows that our model achieves better faithfulness ratings compared to its counterpart without contrastive objectives.

Causality can be described in terms of a structural causal model (SCM) that carries information on the variables of interest and their mechanistic relations. For most processes of interest the underlying SCM will only be partially observable, thus causal inference tries to leverage any exposed information. Graph neural networks (GNN) as universal approximators on structured input pose a viable candidate for causal learning, suggesting a tighter integration with SCM. To this effect we present a theoretical analysis from first principles that establishes a novel connection between GNN and SCM while providing an extended view on general neural-causal models. We then establish a new model class for GNN-based causal inference that is necessary and sufficient for causal effect identification. Our empirical illustration on simulations and standard benchmarks validate our theoretical proofs.

Graph neural networks (GNNs) are a popular class of machine learning models whose major advantage is their ability to incorporate a sparse and discrete dependency structure between data points. Unfortunately, GNNs can only be used when such a graph-structure is available. In practice, however, real-world graphs are often noisy and incomplete or might not be available at all. With this work, we propose to jointly learn the graph structure and the parameters of graph convolutional networks (GCNs) by approximately solving a bilevel program that learns a discrete probability distribution on the edges of the graph. This allows one to apply GCNs not only in scenarios where the given graph is incomplete or corrupted but also in those where a graph is not available. We conduct a series of experiments that analyze the behavior of the proposed method and demonstrate that it outperforms related methods by a significant margin.

北京阿比特科技有限公司