Fault attacks enable adversaries to manipulate the control-flow of security-critical applications. By inducing targeted faults into the CPU, the software's call graph can be escaped and the control-flow can be redirected to arbitrary functions inside the program. To protect the control-flow from these attacks, dedicated fault control-flow integrity (CFI) countermeasures are commonly deployed. However, these schemes either have high detection latencies or require intrusive hardware changes. In this paper, we present EC-CFI, a software-based cryptographically enforced CFI scheme with no detection latency utilizing hardware features of recent Intel platforms. Our EC-CFI prototype is designed to prevent an adversary from escaping the program's call graph using faults by encrypting each function with a different key before execution. At runtime, the instrumented program dynamically derives the decryption key, ensuring that the code only can be successfully decrypted when the program follows the intended call graph. To enable this level of protection on Intel commodity systems, we introduce extended page table (EPT) aliasing allowing us to achieve function-granular encryption by combing Intel's TME-MK and virtualization technology. We open-source our custom LLVM-based toolchain automatically protecting arbitrary programs with EC-CFI. Furthermore, we evaluate our EPT aliasing approach with the SPEC CPU2017 and Embench-IoT benchmarks and discuss and evaluate potential TME-MK hardware changes minimizing runtime overheads.
Byzantine fault-tolerant (BFT) systems are able to maintain the availability and integrity of IoT systems, in presence of failure of individual components, random data corruption or malicious attacks. Fault-tolerant systems in general are essential in assuring continuity of service for mission critical applications. However, their implementation may be challenging and expensive. In this study, IoT Systems with Byzantine Fault-Tolerance are considered. Analytical models and solutions are presented as well as a detailed analysis for the evaluation of the availability. Byzantine Fault Tolerance is particularly important for blockchain mechanisms, and in turn for IoT, since it can provide a secure, reliable and decentralized infrastructure for IoT devices to communicate and transact with each other. The proposed model is based on continuous-time Markov chains, and it analyses the availability of Byzantine Fault-Tolerant systems. While the availability model is based on a continuous-time Markov chain where the breakdown and repair times follow exponential distributions, the number of the Byzantine nodes in the network studied follows various distributions. The numerical results presented report availability as a function of the number of participants and the relative number of honest actors in the system. It can be concluded from the model that there is a non-linear relationship between the number of servers and network availability; i.e. the availability is inversely proportional to the number of nodes in the system. This relationship is further strengthened as the ratio of break-down rate over repair rate increases.
Degraded broadcast channels (DBC) are a typical multi-user communications scenario. There exist classic transmission methods, such as superposition coding with successive interference cancellation, to achieve the DBC capacity region. However, semantic communications method over DBC remains lack of in-depth research. To address this, we design a fusion-based multi-user semantic communications system for wireless image transmission over DBC in this paper. The proposed architecture supports a transmitter extracting semantic features for two users separately, and learns to dynamically fuse these semantic features into a joint latent representation for broadcasting. The key here is to design a flexible image semantic fusion (FISF) module to fuse the semantic features of two users, and to use a multi-layer perceptron (MLP) based neural network to adjust the weights of different user semantic features for flexible adaptability to different users channels. Experiments present the semantic performance region based on the peak signal-to-noise ratio (PSNR) of both users, and show that the proposed system dominates the traditional methods.
Over the past decade, analogies, in the form of word-level analogies, have played a significant role as an intrinsic measure of evaluating the quality of word embedding methods such as word2vec. Modern large language models (LLMs), however, are primarily evaluated on extrinsic measures based on benchmarks such as GLUE and SuperGLUE, and there are only a few investigations on whether LLMs can draw analogies between long texts. In this paper, we present ANALOGICAL, a new benchmark to intrinsically evaluate LLMs across a taxonomy of analogies of long text with six levels of complexity -- (i) word, (ii) word vs. sentence, (iii) syntactic, (iv) negation, (v) entailment, and (vi) metaphor. Using thirteen datasets and three different distance measures, we evaluate the abilities of eight LLMs in identifying analogical pairs in the semantic vector space. Our evaluation finds that it is increasingly challenging for LLMs to identify analogies when going up the analogy taxonomy.
To understand the growing phenomena of new vocabulary on nationwide online social media, we analyzed monthly word count time series extracted from approximately 1 billion Japanese blog articles from 2007 to 2019. In particular, we first introduced the extended logistic equation by adding one parameter to the original equation and showed that the model can consistently reproduce various patterns of actual growth curves, such as the logistic function, linear growth, and finite-time divergence. Second, by analyzing the model parameters, we found that the typical growth pattern is not only a logistic function, which often appears in various complex systems, but also a nontrivial growth curve that starts with an exponential function and asymptotically approaches a power function without a steady state. Furthermore, we observed a connection between the functional form of growth and the peak-out. Finally, we showed that the proposed model and statistical properties are also valid for Google Trends data (English, French, Spanish, and Japanese), which is a time series of the nationwide popularity of search queries.
Real-world data, such as administrative claims and electronic health records, are increasingly used for safety monitoring and to help guide regulatory decision-making. In these settings, it is important to document analytic decisions transparently and objectively to ensure that analyses meet their intended goals. The Causal Roadmap is an established framework that can guide and document analytic decisions through each step of the analytic pipeline, which will help investigators generate high-quality real-world evidence. In this paper, we illustrate the utility of the Causal Roadmap using two case studies previously led by workgroups sponsored by the Sentinel Initiative -- a program for actively monitoring the safety of regulated medical products. Each case example focuses on different aspects of the analytic pipeline for drug safety monitoring. The first case study shows how the Causal Roadmap encourages transparency, reproducibility, and objective decision-making for causal analyses. The second case study highlights how this framework can guide analytic decisions beyond inference on causal parameters, improving outcome ascertainment in clinical phenotyping. These examples provide a structured framework for implementing the Causal Roadmap in safety surveillance and guide transparent, reproducible, and objective analysis.
Iterative memory-bound solvers commonly occur in HPC codes. Typical GPU implementations have a loop on the host side that invokes the GPU kernel as much as time/algorithm steps there are. The termination of each kernel implicitly acts the barrier required after advancing the solution every time step. We propose an execution model for running memory-bound iterative GPU kernels: PERsistent KernelS (PERKS). In this model, the time loop is moved inside persistent kernel, and device-wide barriers are used for synchronization. We then reduce the traffic to device memory by caching subset of the output in each time step in the unused registers and shared memory. PERKS can be generalized to any iterative solver: they largely independent of the solver's implementation. We explain the design principle of PERKS and demonstrate effectiveness of PERKS for a wide range of iterative 2D/3D stencil benchmarks (geomean speedup of $2.12$x for 2D stencils and $1.24$x for 3D stencils over state-of-art libraries), and a Krylov subspace conjugate gradient solver (geomean speedup of $4.86$x in smaller SpMV datasets from SuiteSparse and $1.43$x in larger SpMV datasets over a state-of-art library). All PERKS-based implementations available at: //github.com/neozhang307/PERKS.
We consider the problem of authenticated communication over a discrete arbitrarily varying channel where the legitimate parties are unaware of whether or not an adversary is present. When there is no adversary, the channel state always takes a default value $s_0$. When the adversary is present, they may choose the channel state sequence based on a non-causal noisy view of the transmitted codewords and the encoding and decoding scheme. We require that the decoder output the correct message with a high probability when there is no adversary, and either output the correct message or reject the transmission when the adversary is present. Further, we allow the transmitter to employ private randomness during encoding that is known neither to the receiver nor the adversary. Our first result proves a dichotomy property for the capacity for this problem -- the capacity either equals zero or it equals the non-adversarial capacity of the channel. Next, we give a sufficient condition for the capacity for this problem to be positive even when the non-adversarial channel to the receiver is stochastically degraded with respect to the channel to the adversary. Our proofs rely on a connection to a standalone authentication problem, where the goal is to accept or reject a candidate message that is already available to the decoder. Finally, we give examples and compare our sufficient condition with other related conditions known in the literature
Over the years, several memory models have been proposed to capture the subtle concurrency semantics of C/C++.One of the most fundamental problems associated with a memory model M is consistency checking: given an execution X, is X consistent with M? This problem lies at the heart of numerous applications, including specification testing and litmus tests, stateless model checking, and dynamic analyses. As such, it has been explored extensively and its complexity is well-understood for traditional models like SC and TSO. However, less is known for the numerous model variants of C/C++, for which the problem becomes challenging due to the intricacies of their concurrency primitives. In this work we study the problem of consistency checking for popular variants of the C11 memory model, in particular, the RC20 model, its release-acquire (RA) fragment, the strong and weak variants of RA (SRA and WRA), as well as the Relaxed fragment of RC20. Motivated by applications in testing and model checking, we focus on reads-from consistency checking. The input is an execution X specifying a set of events, their program order and their reads-from relation, and the task is to decide the existence of a modification order on the writes of X that makes X consistent in a memory model. We draw a rich complexity landscape for this problem; our results include (i)~nearly-linear-time algorithms for certain variants, which improve over prior results, (ii)~fine-grained optimality results, as well as (iii)~matching upper and lower bounds (NP-hardness) for other variants. To our knowledge, this is the first work to characterize the complexity of consistency checking for C11 memory models. We have implemented our algorithms inside the TruSt model checker and the C11Tester testing tool. Experiments on standard benchmarks show that our new algorithms improve consistency checking, often by a significant margin.
With the advent of 5G commercialization, the need for more reliable, faster, and intelligent telecommunication systems are envisaged for the next generation beyond 5G (B5G) radio access technologies. Artificial Intelligence (AI) and Machine Learning (ML) are not just immensely popular in the service layer applications but also have been proposed as essential enablers in many aspects of B5G networks, from IoT devices and edge computing to cloud-based infrastructures. However, most of the existing surveys in B5G security focus on the performance of AI/ML models and their accuracy, but they often overlook the accountability and trustworthiness of the models' decisions. Explainable AI (XAI) methods are promising techniques that would allow system developers to identify the internal workings of AI/ML black-box models. The goal of using XAI in the security domain of B5G is to allow the decision-making processes of the security of systems to be transparent and comprehensible to stakeholders making the systems accountable for automated actions. In every facet of the forthcoming B5G era, including B5G technologies such as RAN, zero-touch network management, E2E slicing, this survey emphasizes the role of XAI in them and the use cases that the general users would ultimately enjoy. Furthermore, we presented the lessons learned from recent efforts and future research directions on top of the currently conducted projects involving XAI.
Command, Control, Communication, and Intelligence (C3I) system is a kind of system-of-system that integrates computing machines, sensors, and communication networks. C3I systems are increasingly used in critical civil and military operations for achieving information superiority, assurance, and operational efficacy. C3I systems are no exception to the traditional systems facing widespread cyber-threats. However, the sensitive nature of the application domain (e.g., military operations) of C3I systems makes their security a critical concern. For instance, a cyber-attack on military installations can have detrimental impacts on national security. Therefore, in this paper, we review the state-of-the-art on the security of C3I systems. In particular, this paper aims to identify the security vulnerabilities, attack vectors, and countermeasures for C3I systems. We used the well-known systematic literature review method to select and review 77 studies on the security of C3I systems. Our review enabled us to identify 27 vulnerabilities, 22 attack vectors, and 62 countermeasures for C3I systems. This review has also revealed several areas for future research and identified key lessons with regards to C3I systems' security.