In this study, I employ a multifaceted comprehensive scientometric approach to explore the intellectual underpinnings of AI and ML in financial research by examining the publication patterns of articles, journals, authors, institutions, and nations by leveraging quantitative techniques, that transcend conventional systematic literature reviews, enabling the effective analysis of vast scientometric and bibliographic data. By applying these approaches, I identify influential works, seminal contributions, thought leaders, topical clusters, research streams, and new research frontiers, ultimately fostering a deeper understanding of the knowledge structure in AI and ML finance research by considering publication records from 2010 to 2022 from several search engines and database sources. The present study finds a marked increase in publications from 2017 to 2022, which highlights a growing interest and expanding research activity in the field, indicating its potential significance and relevance in the contemporary academic landscape.
Our research focuses on the analysis and improvement of the Graph-based Relation Inference Transformer (GRIT), which serves as an important benchmark in the field. We conduct a comprehensive ablation study using the PISC-fine dataset, to find and explore improvement in efficiency and performance of GRITv2. Our research has provided a new state-of-the-art relation recognition model on the PISC relation dataset. We introduce several features in the GRIT model and analyse our new benchmarks in two versions: GRITv2-L (large) and GRITv2-S (small). Our proposed GRITv2-L surpasses existing methods on relation recognition and the GRITv2-S is within 2% performance gap of GRITv2-L, which has only 0.0625x the model size and parameters of GRITv2-L. Furthermore, we also address the need for model compression, an area crucial for deploying efficient models on resource-constrained platforms. By applying quantization techniques, we efficiently reduced the GRITv2-S size to 22MB and deployed it on the flagship OnePlus 12 mobile which still surpasses the PISC-fine benchmarks in performance, highlighting the practical viability and improved efficiency of our model on mobile devices.
In this paper, we explore adaptive inference based on variational Bayes. Although several studies have been conducted to analyze the contraction properties of variational posteriors, there is still a lack of a general and computationally tractable variational Bayes method that performs adaptive inference. To fill this gap, we propose a novel adaptive variational Bayes framework, which can operate on a collection of models. The proposed framework first computes a variational posterior over each individual model separately and then combines them with certain weights to produce a variational posterior over the entire model. It turns out that this combined variational posterior is the closest member to the posterior over the entire model in a predefined family of approximating distributions. We show that the adaptive variational Bayes attains optimal contraction rates adaptively under very general conditions. We also provide a methodology to maintain the tractability and adaptive optimality of the adaptive variational Bayes even in the presence of an enormous number of individual models, such as sparse models. We apply the general results to several examples, including deep learning and sparse factor models, and derive new and adaptive inference results. In addition, we characterize an implicit regularization effect of variational Bayes and show that the adaptive variational posterior can utilize this.
We tackle the problem of sampling from intractable high-dimensional density functions, a fundamental task that often appears in machine learning and statistics. We extend recent sampling-based approaches that leverage controlled stochastic processes to model approximate samples from these target densities. The main drawback of these approaches is that the training objective requires full trajectories to compute, resulting in sluggish credit assignment issues due to use of entire trajectories and a learning signal present only at the terminal time. In this work, we present Diffusion Generative Flow Samplers (DGFS), a sampling-based framework where the learning process can be tractably broken down into short partial trajectory segments, via parameterizing an additional "flow function". Our method takes inspiration from the theory developed for generative flow networks (GFlowNets), allowing us to make use of intermediate learning signals. Through various challenging experiments, we demonstrate that DGFS achieves more accurate estimates of the normalization constant than closely-related prior methods.
This study addresses the challenge of extending Large Language Models (LLMs) to non-English languages using non-Roman scripts. We propose an approach that utilizes the romanized form of text as an interface for LLMs, hypothesizing that its frequent informal use and shared tokens with English enhance cross-lingual alignment. Our approach involves the continual pretraining of an English LLM like Llama 2 on romanized text of non-English, non-Roman script languages, followed by instruction tuning on romanized data. The results indicate that romanized text not only reduces token fertility by 2x-4x but also matches or outperforms native script representation across various NLU, NLG, and MT tasks. Moreover, the embeddings computed on romanized text exhibit closer alignment with their English translations than those from the native script. Our approach presents a promising direction for leveraging the power of English LLMs in languages traditionally underrepresented in NLP.
We study distributed training of deep learning models in time-constrained environments. We propose a new algorithm that periodically pulls workers towards the center variable computed as a weighted average of workers, where the weights are inversely proportional to the gradient norms of the workers such that recovering the flat regions in the optimization landscape is prioritized. We develop two asynchronous variants of the proposed algorithm that we call Model-level and Layer-level Gradient-based Weighted Averaging (resp. MGRAWA and LGRAWA), which differ in terms of the weighting scheme that is either done with respect to the entire model or is applied layer-wise. On the theoretical front, we prove the convergence guarantee for the proposed approach in both convex and non-convex settings. We then experimentally demonstrate that our algorithms outperform the competitor methods by achieving faster convergence and recovering better quality and flatter local optima. We also carry out an ablation study to analyze the scalability of the proposed algorithms in more crowded distributed training environments. Finally, we report that our approach requires less frequent communication and fewer distributed updates compared to the state-of-the-art baselines.
Deep neural network based recommendation systems have achieved great success as information filtering techniques in recent years. However, since model training from scratch requires sufficient data, deep learning-based recommendation methods still face the bottlenecks of insufficient data and computational inefficiency. Meta-learning, as an emerging paradigm that learns to improve the learning efficiency and generalization ability of algorithms, has shown its strength in tackling the data sparsity issue. Recently, a growing number of studies on deep meta-learning based recommenddation systems have emerged for improving the performance under recommendation scenarios where available data is limited, e.g. user cold-start and item cold-start. Therefore, this survey provides a timely and comprehensive overview of current deep meta-learning based recommendation methods. Specifically, we propose a taxonomy to discuss existing methods according to recommendation scenarios, meta-learning techniques, and meta-knowledge representations, which could provide the design space for meta-learning based recommendation methods. For each recommendation scenario, we further discuss technical details about how existing methods apply meta-learning to improve the generalization ability of recommendation models. Finally, we also point out several limitations in current research and highlight some promising directions for future research in this area.
Deep learning constitutes a recent, modern technique for image processing and data analysis, with promising results and large potential. As deep learning has been successfully applied in various domains, it has recently entered also the domain of agriculture. In this paper, we perform a survey of 40 research efforts that employ deep learning techniques, applied to various agricultural and food production challenges. We examine the particular agricultural problems under study, the specific models and frameworks employed, the sources, nature and pre-processing of data used, and the overall performance achieved according to the metrics used at each work under study. Moreover, we study comparisons of deep learning with other existing popular techniques, in respect to differences in classification or regression performance. Our findings indicate that deep learning provides high accuracy, outperforming existing commonly used image processing techniques.
In this paper, we focus on three problems in deep learning based medical image segmentation. Firstly, U-net, as a popular model for medical image segmentation, is difficult to train when convolutional layers increase even though a deeper network usually has a better generalization ability because of more learnable parameters. Secondly, the exponential ReLU (ELU), as an alternative of ReLU, is not much different from ReLU when the network of interest gets deep. Thirdly, the Dice loss, as one of the pervasive loss functions for medical image segmentation, is not effective when the prediction is close to ground truth and will cause oscillation during training. To address the aforementioned three problems, we propose and validate a deeper network that can fit medical image datasets that are usually small in the sample size. Meanwhile, we propose a new loss function to accelerate the learning process and a combination of different activation functions to improve the network performance. Our experimental results suggest that our network is comparable or superior to state-of-the-art methods.
We study the problem of named entity recognition (NER) from electronic medical records, which is one of the most fundamental and critical problems for medical text mining. Medical records which are written by clinicians from different specialties usually contain quite different terminologies and writing styles. The difference of specialties and the cost of human annotation makes it particularly difficult to train a universal medical NER system. In this paper, we propose a label-aware double transfer learning framework (La-DTL) for cross-specialty NER, so that a medical NER system designed for one specialty could be conveniently applied to another one with minimal annotation efforts. The transferability is guaranteed by two components: (i) we propose label-aware MMD for feature representation transfer, and (ii) we perform parameter transfer with a theoretical upper bound which is also label aware. We conduct extensive experiments on 12 cross-specialty NER tasks. The experimental results demonstrate that La-DTL provides consistent accuracy improvement over strong baselines. Besides, the promising experimental results on non-medical NER scenarios indicate that La-DTL is potential to be seamlessly adapted to a wide range of NER tasks.
Machine Learning has been the quintessential solution for many AI problems, but learning is still heavily dependent on the specific training data. Some learning models can be incorporated with a prior knowledge in the Bayesian set up, but these learning models do not have the ability to access any organised world knowledge on demand. In this work, we propose to enhance learning models with world knowledge in the form of Knowledge Graph (KG) fact triples for Natural Language Processing (NLP) tasks. Our aim is to develop a deep learning model that can extract relevant prior support facts from knowledge graphs depending on the task using attention mechanism. We introduce a convolution-based model for learning representations of knowledge graph entity and relation clusters in order to reduce the attention space. We show that the proposed method is highly scalable to the amount of prior information that has to be processed and can be applied to any generic NLP task. Using this method we show significant improvement in performance for text classification with News20, DBPedia datasets and natural language inference with Stanford Natural Language Inference (SNLI) dataset. We also demonstrate that a deep learning model can be trained well with substantially less amount of labeled training data, when it has access to organised world knowledge in the form of knowledge graph.