亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Recurrence equations lie at the heart of many computational paradigms including dynamic programming, graph analysis, and linear solvers. These equations are often expensive to compute and much work has gone into optimizing them for different situations. The set of recurrence implementations is a large design space across the set of all recurrences (e.g., the Viterbi and Floyd-Warshall algorithms), the choice of data structures (e.g., dense and sparse matrices), and the set of different loop orders. Optimized library implementations do not exist for most points in this design space, and developers must therefore often manually implement and optimize recurrences. We present a general framework for compiling recurrence equations into native code corresponding to any valid point in this general design space. In this framework, users specify a system of recurrences, the type of data structures for storing the input and outputs, and a set of scheduling primitives for optimization. A greedy algorithm then takes this specification and lowers it into a native program that respects the dependencies inherent to the recurrence equation. We describe the compiler transformations necessary to lower this high-level specification into native parallel code for either sparse and dense data structures and provide an algorithm for determining whether the recurrence system is solvable with the provided scheduling primitives. We evaluate the performance and correctness of the generated code on various computational tasks from domains including dense and sparse matrix solvers, dynamic programming, graph problems, and sparse tensor algebra. We demonstrate that generated code has competitive performance to handwritten implementations in libraries.

相關內容

Generalized variational inference (GVI) provides an optimization-theoretic framework for statistical estimation that encapsulates many traditional estimation procedures. The typical GVI problem is to compute a distribution of parameters that maximizes the expected payoff minus the divergence of the distribution from a specified prior. In this way, GVI enables likelihood-free estimation with the ability to control the influence of the prior by tuning the so-called learning rate. Recently, GVI was shown to outperform traditional Bayesian inference when the model and prior distribution are misspecified. In this paper, we introduce and analyze a new GVI formulation based on utility theory and risk management. Our formulation is to maximize the expected payoff while enforcing constraints on the maximizing distribution. We recover the original GVI distribution by choosing the feasible set to include a constraint on the divergence of the distribution from the prior. In doing so, we automatically determine the learning rate as the Lagrange multiplier for the constraint. In this setting, we are able to transform the infinite-dimensional estimation problem into a two-dimensional convex program. This reformulation further provides an analytic expression for the optimal density of parameters. In addition, we prove asymptotic consistency results for empirical approximations of our optimal distributions. Throughout, we draw connections between our estimation procedure and risk management. In fact, we demonstrate that our estimation procedure is equivalent to evaluating a risk measure. We test our procedure on an estimation problem with a misspecified model and prior distribution, and conclude with some extensions of our approach.

A number of engineering and scientific problems require representing and manipulating probability distributions over large alphabets, which we may think of as long vectors of reals summing to $1$. In some cases it is required to represent such a vector with only $b$ bits per entry. A natural choice is to partition the interval $[0,1]$ into $2^b$ uniform bins and quantize entries to each bin independently. We show that a minor modification of this procedure -- applying an entrywise non-linear function (compander) $f(x)$ prior to quantization -- yields an extremely effective quantization method. For example, for $b=8 (16)$ and $10^5$-sized alphabets, the quality of representation improves from a loss (under KL divergence) of $0.5 (0.1)$ bits/entry to $10^{-4} (10^{-9})$ bits/entry. Compared to floating point representations, our compander method improves the loss from $10^{-1}(10^{-6})$ to $10^{-4}(10^{-9})$ bits/entry. These numbers hold for both real-world data (word frequencies in books and DNA $k$-mer counts) and for synthetic randomly generated distributions. Theoretically, we set up a minimax optimality criterion and show that the compander $f(x) ~\propto~ \mathrm{ArcSinh}(\sqrt{(1/2) (K \log K) x})$ achieves near-optimal performance, attaining a KL-quantization loss of $\asymp 2^{-2b} \log^2 K$ for a $K$-letter alphabet and $b\to \infty$. Interestingly, a similar minimax criterion for the quadratic loss on the hypercube shows optimality of the standard uniform quantizer. This suggests that the $\mathrm{ArcSinh}$ quantizer is as fundamental for KL-distortion as the uniform quantizer for quadratic distortion.

We provide several new results on the sample complexity of vector-valued linear predictors (parameterized by a matrix), and more generally neural networks. Focusing on size-independent bounds, where only the Frobenius norm distance of the parameters from some fixed reference matrix $W_0$ is controlled, we show that the sample complexity behavior can be surprisingly different than what we may expect considering the well-studied setting of scalar-valued linear predictors. This also leads to new sample complexity bounds for feed-forward neural networks, tackling some open questions in the literature, and establishing a new convex linear prediction problem that is provably learnable without uniform convergence.

The human hand's complex kinematics allow for simultaneous grasping and manipulation of multiple objects, essential for tasks like object transfer and in-hand manipulation. Despite its importance, robotic multi-object grasping remains underexplored and presents challenges in kinematics, dynamics, and object configurations. This paper introduces MultiGrasp, a two-stage method for multi-object grasping on a tabletop with a multi-finger dexterous hand. It involves (i) generating pre-grasp proposals and (ii) executing the grasp and lifting the objects. Experimental results primarily focus on dual-object grasping and report a 44.13% success rate, showcasing adaptability to unseen object configurations and imprecise grasps. The framework also demonstrates the capability to grasp more than two objects, albeit at a reduced inference speed.

For graph self-supervised learning (GSSL), masked autoencoder (MAE) follows the generative paradigm and learns to reconstruct masked graph edges or node features. Contrastive Learning (CL) maximizes the similarity between augmented views of the same graph and is widely used for GSSL. However, MAE and CL are considered separately in existing works for GSSL. We observe that the MAE and CL paradigms are complementary and propose the graph contrastive masked autoencoder (GCMAE) framework to unify them. Specifically, by focusing on local edges or node features, MAE cannot capture global information of the graph and is sensitive to particular edges and features. On the contrary, CL excels in extracting global information because it considers the relation between graphs. As such, we equip GCMAE with an MAE branch and a CL branch, and the two branches share a common encoder, which allows the MAE branch to exploit the global information extracted by the CL branch. To force GCMAE to capture global graph structures, we train it to reconstruct the entire adjacency matrix instead of only the masked edges as in existing works. Moreover, a discrimination loss is proposed for feature reconstruction, which improves the disparity between node embeddings rather than reducing the reconstruction error to tackle the feature smoothing problem of MAE. We evaluate GCMAE on four popular graph tasks (i.e., node classification, node clustering, link prediction, and graph classification) and compare with 14 state-of-the-art baselines. The results show that GCMAE consistently provides good accuracy across these tasks, and the maximum accuracy improvement is up to 3.2% compared with the best-performing baseline.

This paper introduces a crowd modeling and motion control approach that employs diffusion adaptation within an adaptive network. In the network, nodes collaboratively address specific estimation problems while simultaneously moving as agents governed by certain motion control mechanisms. Our research delves into the behaviors of agents when they encounter spatial constraints. Within this framework, agents pursue several objectives, such as target tracking, coherent motion, and obstacle evasion. Throughout their navigation, they demonstrate a nature of self-organization and self-adjustment that drives them to maintain certain social distances with each other, and adaptively adjust their behaviors in response to the environmental changes. Our findings suggest a promising approach to mitigate the spread of viral pandemics and averting stampedes.

This paper focuses on causal representation learning (CRL) under a general nonparametric causal latent model and a general transformation model that maps the latent data to the observational data. It establishes \textbf{identifiability} and \textbf{achievability} results using two hard \textbf{uncoupled} interventions per node in the latent causal graph. Notably, one does not know which pair of intervention environments have the same node intervened (hence, uncoupled environments). For identifiability, the paper establishes that perfect recovery of the latent causal model and variables is guaranteed under uncoupled interventions. For achievability, an algorithm is designed that uses observational and interventional data and recovers the latent causal model and variables with provable guarantees for the algorithm. This algorithm leverages score variations across different environments to estimate the inverse of the transformer and, subsequently, the latent variables. The analysis, additionally, recovers the existing identifiability result for two hard \textbf{coupled} interventions, that is when metadata about the pair of environments that have the same node intervened is known. It is noteworthy that the existing results on non-parametric identifiability require assumptions on interventions and additional faithfulness assumptions. This paper shows that when observational data is available, additional faithfulness assumptions are unnecessary.

The searching efficiency of the quantum approximate optimization algorithm is dependent on both the classical and quantum sides of the algorithm. Recently a quantum approximate Bayesian optimization algorithm (QABOA) that includes two mixers was developed, where surrogate-based Bayesian optimization is applied to improve the sampling efficiency of the classical optimizer. A continuous-time quantum walk mixer is used to enhance exploration, and the generalized Grover mixer is also applied to improve exploitation. In this paper, an extension of QABOA is proposed to further improve its searching efficiency. The searching efficiency is enhanced through two aspects. First, two mixers, including one for exploration and the other for exploitation, are applied in an alternating fashion. Second, uncertainty of the quantum circuit is quantified with a new quantum Mat\'ern kernel based on the kurtosis of the basis state distribution, which increases the chance of obtaining the optimum. The proposed new two-mixer QABOA$'$s with and without uncertainty quantification are compared with three single-mixer QABOA$'$s on five discrete and four mixed-integer problems. The results show that the proposed two-mixer QABOA with uncertainty quantification has the best performance in efficiency and consistency for five out of the nine tested problems. The results also show that QABOA with the generalized Grover mixer performs the best among the single-mixer algorithms, thereby demonstrating the benefit of exploitation and the importance of dynamic exploration-exploitation balance in improving searching efficiency.

We introduce a generic framework that reduces the computational cost of object detection while retaining accuracy for scenarios where objects with varied sizes appear in high resolution images. Detection progresses in a coarse-to-fine manner, first on a down-sampled version of the image and then on a sequence of higher resolution regions identified as likely to improve the detection accuracy. Built upon reinforcement learning, our approach consists of a model (R-net) that uses coarse detection results to predict the potential accuracy gain for analyzing a region at a higher resolution and another model (Q-net) that sequentially selects regions to zoom in. Experiments on the Caltech Pedestrians dataset show that our approach reduces the number of processed pixels by over 50% without a drop in detection accuracy. The merits of our approach become more significant on a high resolution test set collected from YFCC100M dataset, where our approach maintains high detection performance while reducing the number of processed pixels by about 70% and the detection time by over 50%.

Dynamic programming (DP) solves a variety of structured combinatorial problems by iteratively breaking them down into smaller subproblems. In spite of their versatility, DP algorithms are usually non-differentiable, which hampers their use as a layer in neural networks trained by backpropagation. To address this issue, we propose to smooth the max operator in the dynamic programming recursion, using a strongly convex regularizer. This allows to relax both the optimal value and solution of the original combinatorial problem, and turns a broad class of DP algorithms into differentiable operators. Theoretically, we provide a new probabilistic perspective on backpropagating through these DP operators, and relate them to inference in graphical models. We derive two particular instantiations of our framework, a smoothed Viterbi algorithm for sequence prediction and a smoothed DTW algorithm for time-series alignment. We showcase these instantiations on two structured prediction tasks and on structured and sparse attention for neural machine translation.

北京阿比特科技有限公司