亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

High-resolution fMRI provides a window into the brain's mesoscale organization. Yet, higher spatial resolution increases scan times, to compensate for the low signal and contrast-to-noise ratio. This work introduces a deep learning-based 3D super-resolution (SR) method for fMRI. By incorporating a resolution-agnostic image augmentation framework, our method adapts to varying voxel sizes without retraining. We apply this innovative technique to localize fine-scale motion-selective sites in the early visual areas. Detection of these sites typically requires a resolution higher than 1 mm isotropic, whereas here, we visualize them based on lower resolution (2-3mm isotropic) fMRI data. Remarkably, the super-resolved fMRI is able to recover high-frequency detail of the interdigitated organization of these sites (relative to the color-selective sites), even with training data sourced from different subjects and experimental paradigms -- including non-visual resting-state fMRI, underscoring its robustness and versatility. Quantitative and qualitative results indicate that our method has the potential to enhance the spatial resolution of fMRI, leading to a drastic reduction in acquisition time.

相關內容

Image-level regression is an important task in Earth observation, where visual domain and label shifts are a core challenge hampering generalization. However, cross-domain regression with remote sensing data remains understudied due to the absence of suited datasets. We introduce a new dataset with aerial and satellite imagery in five countries with three forest-related regression tasks. To match real-world applicative interests, we compare methods through a restrictive setup where no prior on the target domain is available during training, and models are adapted with limited information during testing. Building on the assumption that ordered relationships generalize better, we propose manifold diffusion for regression as a strong baseline for transduction in low-data regimes. Our comparison highlights the comparative advantages of inductive and transductive methods in cross-domain regression.

We propose an efficient solver for the privacy funnel (PF) method, leveraging its difference-of-convex (DC) structure. The proposed DC separation results in a closed-form update equation, which allows straightforward application to both known and unknown distribution settings. For known distribution case, we prove the convergence (local stationary points) of the proposed non-greedy solver, and empirically show that it outperforms the state-of-the-art approaches in characterizing the privacy-utility trade-off. The insights of our DC approach apply to unknown distribution settings where labeled empirical samples are available instead. Leveraging the insights, our alternating minimization solver satisfies the fundamental Markov relation of PF in contrast to previous variational inference-based solvers. Empirically, we evaluate the proposed solver with MNIST and Fashion-MNIST datasets. Our results show that under a comparable reconstruction quality, an adversary suffers from higher prediction error from clustering our compressed codes than that with the compared methods. Most importantly, our solver is independent to private information in inference phase contrary to the baselines.

Person attribute recognition and attribute-based retrieval are two core human-centric tasks. In the recognition task, the challenge is specifying attributes depending on a person's appearance, while the retrieval task involves searching for matching persons based on attribute queries. There is a significant relationship between recognition and retrieval tasks. In this study, we demonstrate that if there is a sufficiently robust network to solve person attribute recognition, it can be adapted to facilitate better performance for the retrieval task. Another issue that needs addressing in the retrieval task is the modality gap between attribute queries and persons' images. Therefore, in this paper, we present CLEAR, a unified network designed to address both tasks. We introduce a robust cross-transformers network to handle person attribute recognition. Additionally, leveraging a pre-trained language model, we construct pseudo-descriptions for attribute queries and introduce an effective training strategy to train only a few additional parameters for adapters, facilitating the handling of the retrieval task. Finally, the unified CLEAR model is evaluated on five benchmarks: PETA, PA100K, Market-1501, RAPv2, and UPAR-2024. Without bells and whistles, CLEAR achieves state-of-the-art performance or competitive results for both tasks, significantly outperforming other competitors in terms of person retrieval performance on the widely-used Market-1501 dataset.

Retrieval-augmented Generation (RAG) systems have been actively studied and deployed across various industries to query on domain-specific knowledge base. However, evaluating these systems presents unique challenges due to the scarcity of domain-specific queries and corresponding ground truths, as well as a lack of systematic approaches to diagnosing the cause of failure cases -- whether they stem from knowledge deficits or issues related to system robustness. To address these challenges, we introduce GRAMMAR (GRounded And Modular Methodology for Assessment of RAG), an evaluation framework comprising two key elements: 1) a data generation process that leverages relational databases and LLMs to efficiently produce scalable query-answer pairs. This method facilitates the separation of query logic from linguistic variations for enhanced debugging capabilities; and 2) an evaluation framework that differentiates knowledge gaps from robustness and enables the identification of defective modules. Our empirical results underscore the limitations of current reference-free evaluation approaches and the reliability of GRAMMAR to accurately identify model vulnerabilities.

U-Nets are among the most widely used architectures in computer vision, renowned for their exceptional performance in applications such as image segmentation, denoising, and diffusion modeling. However, a theoretical explanation of the U-Net architecture design has not yet been fully established. This paper introduces a novel interpretation of the U-Net architecture by studying certain generative hierarchical models, which are tree-structured graphical models extensively utilized in both language and image domains. With their encoder-decoder structure, long skip connections, and pooling and up-sampling layers, we demonstrate how U-Nets can naturally implement the belief propagation denoising algorithm in such generative hierarchical models, thereby efficiently approximating the denoising functions. This leads to an efficient sample complexity bound for learning the denoising function using U-Nets within these models. Additionally, we discuss the broader implications of these findings for diffusion models in generative hierarchical models. We also demonstrate that the conventional architecture of convolutional neural networks (ConvNets) is ideally suited for classification tasks within these models. This offers a unified view of the roles of ConvNets and U-Nets, highlighting the versatility of generative hierarchical models in modeling complex data distributions across language and image domains.

Recently, recommender system has achieved significant success. However, due to the openness of recommender systems, they remain vulnerable to malicious attacks. Additionally, natural noise in training data and issues such as data sparsity can also degrade the performance of recommender systems. Therefore, enhancing the robustness of recommender systems has become an increasingly important research topic. In this survey, we provide a comprehensive overview of the robustness of recommender systems. Based on our investigation, we categorize the robustness of recommender systems into adversarial robustness and non-adversarial robustness. In the adversarial robustness, we introduce the fundamental principles and classical methods of recommender system adversarial attacks and defenses. In the non-adversarial robustness, we analyze non-adversarial robustness from the perspectives of data sparsity, natural noise, and data imbalance. Additionally, we summarize commonly used datasets and evaluation metrics for evaluating the robustness of recommender systems. Finally, we also discuss the current challenges in the field of recommender system robustness and potential future research directions. Additionally, to facilitate fair and efficient evaluation of attack and defense methods in adversarial robustness, we propose an adversarial robustness evaluation library--ShillingREC, and we conduct evaluations of basic attack models and recommendation models. ShillingREC project is released at //github.com/chengleileilei/ShillingREC.

Generalizable NeRF aims to synthesize novel views for unseen scenes. Common practices involve constructing variance-based cost volumes for geometry reconstruction and encoding 3D descriptors for decoding novel views. However, existing methods show limited generalization ability in challenging conditions due to inaccurate geometry, sub-optimal descriptors, and decoding strategies. We address these issues point by point. First, we find the variance-based cost volume exhibits failure patterns as the features of pixels corresponding to the same point can be inconsistent across different views due to occlusions or reflections. We introduce an Adaptive Cost Aggregation (ACA) approach to amplify the contribution of consistent pixel pairs and suppress inconsistent ones. Unlike previous methods that solely fuse 2D features into descriptors, our approach introduces a Spatial-View Aggregator (SVA) to incorporate 3D context into descriptors through spatial and inter-view interaction. When decoding the descriptors, we observe the two existing decoding strategies excel in different areas, which are complementary. A Consistency-Aware Fusion (CAF) strategy is proposed to leverage the advantages of both. We incorporate the above ACA, SVA, and CAF into a coarse-to-fine framework, termed Geometry-aware Reconstruction and Fusion-refined Rendering (GeFu). GeFu attains state-of-the-art performance across multiple datasets. Code is available at //github.com/TQTQliu/GeFu .

We consider the estimation of rare-event probabilities using sample proportions output by naive Monte Carlo or collected data. Unlike using variance reduction techniques, this naive estimator does not have a priori relative efficiency guarantee. On the other hand, due to the recent surge of sophisticated rare-event problems arising in safety evaluations of intelligent systems, efficiency-guaranteed variance reduction may face implementation challenges which, coupled with the availability of computation or data collection power, motivate the use of such a naive estimator. In this paper we study the uncertainty quantification, namely the construction, coverage validity and tightness of confidence intervals, for rare-event probabilities using only sample proportions. In addition to the known normality, Wilson's and exact intervals, we investigate and compare them with two new intervals derived from Chernoff's inequality and the Berry-Esseen theorem. Moreover, we generalize our results to the natural situation where sampling stops by reaching a target number of rare-event hits. Our findings show that the normality and Wilson's intervals are not always valid, but they are close to the newly developed valid intervals in terms of half-width. In contrast, the exact interval is conservative, but safely guarantees the attainment of the nominal confidence level. Our new intervals, while being more conservative than the exact interval, provide useful insights in understanding the tightness of the considered intervals.

Deep neural networks (DNNs) are successful in many computer vision tasks. However, the most accurate DNNs require millions of parameters and operations, making them energy, computation and memory intensive. This impedes the deployment of large DNNs in low-power devices with limited compute resources. Recent research improves DNN models by reducing the memory requirement, energy consumption, and number of operations without significantly decreasing the accuracy. This paper surveys the progress of low-power deep learning and computer vision, specifically in regards to inference, and discusses the methods for compacting and accelerating DNN models. The techniques can be divided into four major categories: (1) parameter quantization and pruning, (2) compressed convolutional filters and matrix factorization, (3) network architecture search, and (4) knowledge distillation. We analyze the accuracy, advantages, disadvantages, and potential solutions to the problems with the techniques in each category. We also discuss new evaluation metrics as a guideline for future research.

Within the rapidly developing Internet of Things (IoT), numerous and diverse physical devices, Edge devices, Cloud infrastructure, and their quality of service requirements (QoS), need to be represented within a unified specification in order to enable rapid IoT application development, monitoring, and dynamic reconfiguration. But heterogeneities among different configuration knowledge representation models pose limitations for acquisition, discovery and curation of configuration knowledge for coordinated IoT applications. This paper proposes a unified data model to represent IoT resource configuration knowledge artifacts. It also proposes IoT-CANE (Context-Aware recommendatioN systEm) to facilitate incremental knowledge acquisition and declarative context driven knowledge recommendation.

北京阿比特科技有限公司