亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Previous research demonstrates that the interruption of immersive experiences may lead to a bias in the results of questionnaires. Thus, the traditional way of presenting questionnaires, paper-based or web-based, may not be compatible with evaluating VR experiences. Recent research has shown the positive impact of embedding questionnaires contextually into the virtual environment. However, a comprehensive overview of the available VR questionnaire solutions is currently missing. Furthermore, no clear taxonomy exists for these different solutions in the literature. To address this, we present a literature review of VR questionnaire user interfaces (UI) following PRISMA guidelines. Our search returned 1.109 initial results, which were screened for eligibility, resulting in a corpus of 25 papers. This paper contributes to HCI and games research with a literature review of embedded questionnaires in VR, discussing the advantages and disadvantages and introducing a taxonomy of in-VR questionnaire UIs.

相關內容

分類學是分類的實踐和科學。Wikipedia類別說明了一種分類法,可以通過自動方式提取Wikipedia類別的完整分類法。截至2009年,已經證明,可以使用人工構建的分類法(例如像WordNet這樣的計算詞典的分類法)來改進和重組Wikipedia類別分類法。 從廣義上講,分類法還適用于除父子層次結構以外的關系方案,例如網絡結構。然后分類法可能包括有多父母的單身孩子,例如,“汽車”可能與父母雙方一起出現“車輛”和“鋼結構”;但是對某些人而言,這僅意味著“汽車”是幾種不同分類法的一部分。分類法也可能只是將事物組織成組,或者是按字母順序排列的列表;但是在這里,術語詞匯更合適。在知識管理中的當前用法中,分類法被認為比本體論窄,因為本體論應用了各種各樣的關系類型。 在數學上,分層分類法是給定對象集的分類樹結構。該結構的頂部是適用于所有對象的單個分類,即根節點。此根下的節點是更具體的分類,適用于總分類對象集的子集。推理的進展從一般到更具體。

知識薈萃

精品入門和進階教程、論文和代碼整理等

更多

查看相關VIP內容、論文、資訊等

Image composition is a complex task which requires a lot of information about the scene for an accurate and realistic composition, such as perspective, lighting, shadows, occlusions, and object interactions. Previous methods have predominantly used 2D information for image composition, neglecting the potentials of 3D spatial information. In this work, we propose DepGAN, a Generative Adversarial Network that utilizes depth maps and alpha channels to rectify inaccurate occlusions and enhance transparency effects in image composition. Central to our network is a novel loss function called Depth Aware Loss which quantifies the pixel wise depth difference to accurately delineate occlusion boundaries while compositing objects at different depth levels. Furthermore, we enhance our network's learning process by utilizing opacity data, enabling it to effectively manage compositions involving transparent and semi-transparent objects. We tested our model against state-of-the-art image composition GANs on benchmark (both real and synthetic) datasets. The results reveal that DepGAN significantly outperforms existing methods in terms of accuracy of object placement semantics, transparency and occlusion handling, both visually and quantitatively. Our code is available at //amrtsg.github.io/DepGAN/.

The stability of geotechnical infrastructure assets, such as cuttings and embankments, is crucial to the safe and efficient delivery of transport services. The successful emulation of geotechnical models of deterioration of infrastructure slopes has the potential to inform slope design, maintenance and remediation by introducing the time dependency of deterioration into geotechnical asset management. We have performed computer experiments of deterioration, measured by the factor of safety (FoS), for a set of cutting slope geometries and soil properties that are common in the southern UK. Whilst computer experiments are an extremely useful and cost-effective method of better understanding deterioration mechanisms, it would not be practical to run enough experiments to understand relations between high-dimensional inputs and outputs. Therefore, we trained a fully-Bayesian Gaussian process emulator using an ensemble of 75 computer experiments to predict the FoS. We construct two different emulator models, one approximating the FoS temporal evolution with a quadratic model and one approximating the temporal evolution with a B-spline model; and we emulated their parameters. We also compare the ability of our models to predict failure time. The developed models could be used to inform infrastructure cutting slope design and management, and extend serviceable life.

Self-interested behavior from individuals can collectively lead to poor societal outcomes. These outcomes can seemingly be improved through the actions of altruistic agents, which benefit other agents in the system. However, it is known in specific contexts that altruistic agents can actually induce worse outcomes compared to a fully selfish population -- a phenomenon we term altruistic perversity. This paper provides a holistic investigation into the necessary conditions that give rise to altruistic perversity. In particular, we study the class of two-strategy population games where one sub-population is altruistic and the other is selfish. We find that a population game can admit altruistic perversity only if the associated social welfare function is convex and the altruistic population is sufficiently large. Our results are a first step in establishing a connection between properties of nominal agent interactions and the potential impacts from altruistic behaviors.

We advance a recently flourishing line of work at the intersection of learning theory and computational economics by studying the learnability of two classes of mechanisms prominent in economics, namely menus of lotteries and two-part tariffs. The former is a family of randomized mechanisms designed for selling multiple items, known to achieve revenue beyond deterministic mechanisms, while the latter is designed for selling multiple units (copies) of a single item with applications in real-world scenarios such as car or bike-sharing services. We focus on learning high-revenue mechanisms of this form from buyer valuation data in both distributional settings, where we have access to buyers' valuation samples up-front, and the more challenging and less-studied online settings, where buyers arrive one-at-a-time and no distributional assumption is made about their values. We provide a suite of results with regard to these two families of mechanisms. We provide the first online learning algorithms for menus of lotteries and two-part tariffs with strong regret-bound guarantees. Since the space of parameters is infinite and the revenue functions have discontinuities, the known techniques do not readily apply. However, we are able to provide a reduction to online learning over a finite number of experts, in our case, a finite number of parameters. Furthermore, in the limited buyers type case, we show a reduction to online linear optimization, which allows us to obtain no-regret guarantees by presenting buyers with menus that correspond to a barycentric spanner. In addition, we provide algorithms with improved running times over prior work for the distributional settings. Finally, we demonstrate how techniques from the recent literature in data-driven algorithm design are insufficient for our studied problems.

We study principal components regression (PCR) in an asymptotic high-dimensional regression setting, where the number of data points is proportional to the dimension. We derive exact limiting formulas for the estimation and prediction risks, which depend in a complicated manner on the eigenvalues of the population covariance, the alignment between the population PCs and the true signal, and the number of selected PCs. A key challenge in the high-dimensional setting stems from the fact that the sample covariance is an inconsistent estimate of its population counterpart, so that sample PCs may fail to fully capture potential latent low-dimensional structure in the data. We demonstrate this point through several case studies, including that of a spiked covariance model. To calculate the asymptotic prediction risk, we leverage tools from random matrix theory which to our knowledge have not seen much use to date in the statistics literature: multi-resolvent traces and their associated eigenvector overlap measures.

Text relevance or text matching of query and product is an essential technique for the e-commerce search system to ensure that the displayed products can match the intent of the query. Many studies focus on improving the performance of the relevance model in search system. Recently, pre-trained language models like BERT have achieved promising performance on the text relevance task. While these models perform well on the offline test dataset, there are still obstacles to deploy the pre-trained language model to the online system as their high latency. The two-tower model is extensively employed in industrial scenarios, owing to its ability to harmonize performance with computational efficiency. Regrettably, such models present an opaque ``black box'' nature, which prevents developers from making special optimizations. In this paper, we raise deep Bag-of-Words (DeepBoW) model, an efficient and interpretable relevance architecture for Chinese e-commerce. Our approach proposes to encode the query and the product into the sparse BoW representation, which is a set of word-weight pairs. The weight means the important or the relevant score between the corresponding word and the raw text. The relevance score is measured by the accumulation of the matched word between the sparse BoW representation of the query and the product. Compared to popular dense distributed representation that usually suffers from the drawback of black-box, the most advantage of the proposed representation model is highly explainable and interventionable, which is a superior advantage to the deployment and operation of online search engines. Moreover, the online efficiency of the proposed model is even better than the most efficient inner product form of dense representation ...

We consider the challenging problem of estimating causal effects from purely observational data in the bi-directional Mendelian randomization (MR), where some invalid instruments, as well as unmeasured confounding, usually exist. To address this problem, most existing methods attempt to find proper valid instrumental variables (IVs) for the target causal effect by expert knowledge or by assuming that the causal model is a one-directional MR model. As such, in this paper, we first theoretically investigate the identification of the bi-directional MR from observational data. In particular, we provide necessary and sufficient conditions under which valid IV sets are correctly identified such that the bi-directional MR model is identifiable, including the causal directions of a pair of phenotypes (i.e., the treatment and outcome). Moreover, based on the identification theory, we develop a cluster fusion-like method to discover valid IV sets and estimate the causal effects of interest. We theoretically demonstrate the correctness of the proposed algorithm. Experimental results show the effectiveness of our method for estimating causal effects in bi-directional MR.

As soon as abstract mathematical computations were adapted to computation on digital computers, the problem of efficient representation, manipulation, and communication of the numerical values in those computations arose. Strongly related to the problem of numerical representation is the problem of quantization: in what manner should a set of continuous real-valued numbers be distributed over a fixed discrete set of numbers to minimize the number of bits required and also to maximize the accuracy of the attendant computations? This perennial problem of quantization is particularly relevant whenever memory and/or computational resources are severely restricted, and it has come to the forefront in recent years due to the remarkable performance of Neural Network models in computer vision, natural language processing, and related areas. Moving from floating-point representations to low-precision fixed integer values represented in four bits or less holds the potential to reduce the memory footprint and latency by a factor of 16x; and, in fact, reductions of 4x to 8x are often realized in practice in these applications. Thus, it is not surprising that quantization has emerged recently as an important and very active sub-area of research in the efficient implementation of computations associated with Neural Networks. In this article, we survey approaches to the problem of quantizing the numerical values in deep Neural Network computations, covering the advantages/disadvantages of current methods. With this survey and its organization, we hope to have presented a useful snapshot of the current research in quantization for Neural Networks and to have given an intelligent organization to ease the evaluation of future research in this area.

This work considers the question of how convenient access to copious data impacts our ability to learn causal effects and relations. In what ways is learning causality in the era of big data different from -- or the same as -- the traditional one? To answer this question, this survey provides a comprehensive and structured review of both traditional and frontier methods in learning causality and relations along with the connections between causality and machine learning. This work points out on a case-by-case basis how big data facilitates, complicates, or motivates each approach.

Multi-relation Question Answering is a challenging task, due to the requirement of elaborated analysis on questions and reasoning over multiple fact triples in knowledge base. In this paper, we present a novel model called Interpretable Reasoning Network that employs an interpretable, hop-by-hop reasoning process for question answering. The model dynamically decides which part of an input question should be analyzed at each hop; predicts a relation that corresponds to the current parsed results; utilizes the predicted relation to update the question representation and the state of the reasoning process; and then drives the next-hop reasoning. Experiments show that our model yields state-of-the-art results on two datasets. More interestingly, the model can offer traceable and observable intermediate predictions for reasoning analysis and failure diagnosis, thereby allowing manual manipulation in predicting the final answer.

北京阿比特科技有限公司