亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This paper explores a prevailing trend in the industry: migrating data-intensive analytics applications from on-premises to cloud-native environments. We find that the unique cost models associated with cloud-based storage necessitate a more nuanced understanding of optimizing performance. Specifically, based on traces collected from Uber's Presto fleet in production, we argue that common I/O optimizations, such as table scan and filter, and broadcast join, may lead to unexpected costs when naively applied in the cloud. This is because traditional I/O optimizations mainly focus on improving throughput or latency in on-premises settings, without taking into account the monetary costs associated with storage API calls. In cloud environments, these costs can be significant, potentially involving billions of API calls per day just for Presto workloads at Uber scale. Presented as a case study, this paper serves as a starting point for further research to design efficient I/O strategies specifically tailored for data-intensive applications in cloud settings.

相關內容

This paper describes PyOED, a highly extensible scientific package that enables developing and testing model-constrained optimal experimental design (OED) for inverse problems. Specifically, PyOED aims to be a comprehensive Python toolkit for model-constrained OED. The package targets scientists and researchers interested in understanding the details of OED formulations and approaches. It is also meant to enable researchers to experiment with standard and innovative OED technologies with a wide range of test problems (e.g., simulation models). OED, inverse problems (e.g., Bayesian inversion), and data assimilation (DA) are closely related research fields, and their formulations overlap significantly. Thus, PyOED is continuously being expanded with a plethora of Bayesian inversion, DA, and OED methods as well as new scientific simulation models, observation error models, and observation operators. These pieces are added such that they can be permuted to enable testing OED methods in various settings of varying complexities. The PyOED core is completely written in Python and utilizes the inherent object-oriented capabilities; however, the current version of PyOED is meant to be extensible rather than scalable. Specifically, PyOED is developed to enable rapid development and benchmarking of OED methods with minimal coding effort and to maximize code reutilization. This paper provides a brief description of the PyOED layout and philosophy and provides a set of exemplary test cases and tutorials to demonstrate the potential of the package.

In this paper, the worst-case probability measure over the data is introduced as a tool for characterizing the generalization capabilities of machine learning algorithms. More specifically, the worst-case probability measure is a Gibbs probability measure and the unique solution to the maximization of the expected loss under a relative entropy constraint with respect to a reference probability measure. Fundamental generalization metrics, such as the sensitivity of the expected loss, the sensitivity of the empirical risk, and the generalization gap are shown to have closed-form expressions involving the worst-case data-generating probability measure. Existing results for the Gibbs algorithm, such as characterizing the generalization gap as a sum of mutual information and lautum information, up to a constant factor, are recovered. A novel parallel is established between the worst-case data-generating probability measure and the Gibbs algorithm. Specifically, the Gibbs probability measure is identified as a fundamental commonality of the model space and the data space for machine learning algorithms.

Second-order optimization has been developed to accelerate the training of deep neural networks and it is being applied to increasingly larger-scale models. In this study, towards training on further larger scales, we identify a specific parameterization for second-order optimization that promotes feature learning in a stable manner even if the network width increases significantly. Inspired by a maximal update parameterization, we consider a one-step update of the gradient and reveal the appropriate scales of hyperparameters including random initialization, learning rates, and damping terms. Our approach covers two major second-order optimization algorithms, K-FAC and Shampoo, and we demonstrate that our parameterization achieves higher generalization performance in feature learning. In particular, it enables us to transfer the hyperparameters across models with different widths.

This paper explores methods for estimating or approximating the total variation distance and the chi-squared divergence of probability measures within topological sample spaces, using independent and identically distributed samples. Our focus is on the practical scenario where the sample space is homeomorphic to subsets of Euclidean space, with the specific homeomorphism remaining unknown. Our proposed methods rely on the integral probability metric with witness functions in universal reproducing kernel Hilbert spaces (RKHSs). The estimators we develop consist of learnable parametric functions mapping the sample space to Euclidean space, paired with universal kernels defined in Euclidean space. This approach effectively overcomes the challenge of constructing universal kernels directly on non-Euclidean spaces. Furthermore, the estimators we devise demonstrate asymptotic consistency, and we provide a detailed statistical analysis, shedding light on their practical implementation.

This paper proposes a distributed guiding-vector-field (DGVF) controller for cross-domain unmanned systems (CDUSs) consisting of heterogeneous unmanned aerial vehicles (UAVs) and unmanned surface vehicles (USVs), to achieve coordinated navigation whereas maneuvering along their prescribed paths. In particular, the DGVF controller provides a hierarchical architecture of an upper-level heterogeneous guidance velocity controller and a lower-level signal tracking regulator. Therein, the upper-level controller is to govern multiple heterogeneous USVs and UAVs to approach and maneuver along the prescribed paths and coordinate the formation simultaneously, whereas the low-level regulator is to track the corresponding desired guidance signals provided by the upper-level module. Significantly, the heterogeneous coordination among neighboring UAVs and USVs is achieved merely by the lightweight communication of a scalar (i.e., the additional virtual coordinate), which substantially decreases the communication and computational costs. Sufficient conditions assuring asymptotical convergence of the closed-loop system are derived in presence of the exponentially vanishing tracking errors. Finally, real-lake experiments are conducted on a self-established cross-domain heterogeneous platform consisting of three M-100 UAVs, two HUSTER-16 USVs, a HUSTER-12C USV, and a WiFi 5G wireless communication station to verify the effectiveness of the present DGVF controller.

With the rapid progress in virtual reality (VR) technology, the scope of VR applications has greatly expanded across various domains. However, the superiority of VR training over traditional methods and its impact on learning efficacy are still uncertain. To investigate whether VR training is more effective than traditional methods, we designed virtual training systems for mechanical assembly on both VR and desktop platforms, subsequently conducting pre-test and post-test experiments. A cohort of 53 students, all enrolled in engineering drawing course without prior knowledge distinctions, was randomly divided into three groups: physical training, desktop virtual training, and immersive VR training. Our investigation utilized analysis of covariance (ANCOVA) to examine the differences in post-test scores among the three groups while controlling for pre-test scores. The group that received VR training showed the highest scores on the post-test. Another facet of our study delved into the presence of the virtual system. We developed a specialized scale to assess this aspect for our research objectives. Our findings indicate that VR training can enhance the sense of presence, particularly in terms of sensory factors and realism factors. Moreover, correlation analysis uncovers connections between the various dimensions of presence. This study confirms that using VR training can improve learning efficacy and the presence in the context of mechanical assembly, surpassing traditional training methods. Furthermore, it provides empirical evidence supporting the integration of VR technology in higher education and engineering training. This serves as a reference for the practical application of VR technology in different fields.

The enormous amount of data to be represented using large graphs exceeds in some cases the resources of a conventional computer. Edges in particular can take up a considerable amount of memory as compared to the number of nodes. However, rigorous edge storage might not always be essential to be able to draw the needed conclusions. A similar problem takes records with many variables and attempts to extract the most discernible features. It is said that the ``dimension'' of this data is reduced. Following an approach with the same objective in mind, we can map a graph representation to a $k$-dimensional space and answer queries of neighboring nodes mainly by measuring Euclidean distances. The accuracy of our answers would decrease but would be compensated for by fuzzy logic which gives an idea about the likelihood of error. This method allows for reasonable representation in memory while maintaining a fair amount of useful information, and allows for concise embedding in $k$-dimensional Euclidean space as well as solving some problems without having to decompress the graph. Of particular interest is the case where $k=2$. Promising highly accurate experimental results are obtained and reported.

This paper explores the potential of a multidisciplinary approach to testing and aligning artificial general intelligence (AGI) and LLMs. Due to the rapid development and wide application of LLMs, challenges such as ethical alignment, controllability, and predictability of these models have become important research topics. This study investigates an innovative simulation-based multi-agent system within a virtual reality framework that replicates the real-world environment. The framework is populated by automated 'digital citizens,' simulating complex social structures and interactions to examine and optimize AGI. Application of various theories from the fields of sociology, social psychology, computer science, physics, biology, and economics demonstrates the possibility of a more human-aligned and socially responsible AGI. The purpose of such a digital environment is to provide a dynamic platform where advanced AI agents can interact and make independent decisions, thereby mimicking realistic scenarios. The actors in this digital city, operated by the LLMs, serve as the primary agents, exhibiting high degrees of autonomy. While this approach shows immense potential, there are notable challenges and limitations, most significantly the unpredictable nature of real-world social dynamics. This research endeavors to contribute to the development and refinement of AGI, emphasizing the integration of social, ethical, and theoretical dimensions for future research.

The existence of representative datasets is a prerequisite of many successful artificial intelligence and machine learning models. However, the subsequent application of these models often involves scenarios that are inadequately represented in the data used for training. The reasons for this are manifold and range from time and cost constraints to ethical considerations. As a consequence, the reliable use of these models, especially in safety-critical applications, is a huge challenge. Leveraging additional, already existing sources of knowledge is key to overcome the limitations of purely data-driven approaches, and eventually to increase the generalization capability of these models. Furthermore, predictions that conform with knowledge are crucial for making trustworthy and safe decisions even in underrepresented scenarios. This work provides an overview of existing techniques and methods in the literature that combine data-based models with existing knowledge. The identified approaches are structured according to the categories integration, extraction and conformity. Special attention is given to applications in the field of autonomous driving.

We introduce a multi-task setup of identifying and classifying entities, relations, and coreference clusters in scientific articles. We create SciERC, a dataset that includes annotations for all three tasks and develop a unified framework called Scientific Information Extractor (SciIE) for with shared span representations. The multi-task setup reduces cascading errors between tasks and leverages cross-sentence relations through coreference links. Experiments show that our multi-task model outperforms previous models in scientific information extraction without using any domain-specific features. We further show that the framework supports construction of a scientific knowledge graph, which we use to analyze information in scientific literature.

北京阿比特科技有限公司