In freeze drying, thermal radiation has a significant effect on the drying process of vials located near the corner and edge of the trays, resulting in non-uniformity of the products. Understanding and being able to predict the impact of thermal radiation are therefore critical to accurate determination of the drying process endpoint given the variation in heat transfer of each vial. This article presents a new mechanistic model that describes complex thermal radiation during primary drying in conventional, microwave-assisted, and hybrid freeze drying. Modeling of thermal radiation employs the diffuse gray surface model and radiation network approach, which systematically and accurately incorporates simultaneous radiation exchange between every surface including the chamber wall and vials, allowing the framework to be seamlessly applied for analyzing various freeze-dryer designs. Model validation with data from the literature shows accurate prediction of the drying times for all vials, including inner, edge, and corner vials. The validated model is demonstrated for thermal radiation analysis and parametric studies to guide the design and optimization of freeze dryers.
We propose the use of a lower or upper triangular sub-base matrix to replace the identity matrix in the source-check-channel-variable linking protomatrix of a double-protograph low-density parity-check joint-source-channel code (DP-LDPC JSCC). The elements along the diagonal of the proposed lower or upper triangular sub-base matrix are assigned as "1" and the other non-zero elements can take any non-negative integral values. Compared with the traditional DP-LDPC JSCC designs, the new designs show a theoretical channel threshold improvement of up to 0.41 dB and a simulated source symbol error rate improvement of up to 0.5 dB at an error rate of 1e-6.
Video anomaly detection is a complex task, and the principle of "divide and conquer" is often regarded as an effective approach to tackling intricate issues. It's noteworthy that recent methods in video anomaly detection have revealed the application of the divide and conquer philosophy (albeit with distinct perspectives from traditional usage), yielding impressive outcomes. This paper systematically reviews these literatures from six dimensions, aiming to enhance the use of the divide and conquer strategy in video anomaly detection. Furthermore, based on the insights gained from this review, a novel approach is presented, which integrates human skeletal frameworks with video data analysis techniques. This method achieves state-of-the-art performance on the ShanghaiTech dataset, surpassing all existing advanced methods.
Distributed maximization of a submodular function in the MapReduce model has received much attention, culminating in two frameworks that allow a centralized algorithm to be run in the MR setting without loss of approximation, as long as the centralized algorithm satisfies a certain consistency property - which had only been shown to be satisfied by the standard greedy and continous greedy algorithms. A separate line of work has studied parallelizability of submodular maximization in the adaptive complexity model, where each thread may have access to the entire ground set. For the size-constrained maximization of a monotone and submodular function, we show that several sublinearly adaptive algorithms satisfy the consistency property required to work in the MR setting, which yields highly practical parallelizable and distributed algorithms. Also, we develop the first linear-time distributed algorithm for this problem with constant MR rounds. Finally, we provide a method to increase the maximum cardinality constraint for MR algorithms at the cost of additional MR rounds.
6G promises a paradigm shift in which positioning and sensing are inherently integrated, enhancing not only the communication performance but also enabling location- and context-aware services. Historically, positioning and sensing have been viewed through the lens of cost and performance trade-offs, implying an escalated demand for resources, such as radio, physical, and computational resources, for improved performance. However, 6G goes beyond this traditional perspective to encompass a set of broader values, namely sustainability, inclusiveness, and trustworthiness. This paper aims to: (i) shed light on these important value indicators and their relationship with the conventional key performance indicators, and (ii) unveil the dual nature of 6G in relation to these key value indicators (i.e., ensuring operation according to the values and enabling services that affect the values).
Generalized metric spaces are obtained by weakening the requirements (e.g., symmetry) on the distance function and by allowing it to take values in structures (e.g., quantales) that are more general than the set of non-negative real numbers. Quantale-valued metric spaces have gained prominence due to their use in quantitative reasoning on programs/systems, and for defining various notions of behavioral metrics. We investigate imprecision and robustness in the framework of quantale-valued metric spaces, when the quantale is continuous. In particular, we study the relation between the robust topology, which captures robustness of analyses, and the Hausdorff-Smyth hemi-metric. To this end, we define a preorder-enriched monad $\mathsf{P}_S$, called the Hausdorff-Smyth monad, and when $Q$ is a continuous quantale and $X$ is a $Q$-metric space, we relate the topology induced by the metric on $\mathsf{P}_S(X)$ with the robust topology on the powerset $\mathsf{P}(X)$ defined in terms of the metric on $X$.
Orthogonal time frequency space (OTFS) is a modulation technique which is robust against the disruptive effects of doubly-selective channels. In this paper, we perform an experimental study of OTFS by a real-time software defined radio (SDR) setup. Our SDR consists of a Graphical Processing Unit (GPU) for signal processing programmed using Sionna and TensorFlow, and Universal Software Radio Peripheral (USRP) devices for air interface. We implement a low-latency transceiver structure for OTFS and investigate its performance under various Doppler values. By comparing the performance of OTFS with Orthogonal Frequency Division Multiplexing (OFDM), we demonstrate that OTFS is highly robust against the disruptive effects of doubly-selective channels in a real-time experimental setup.
We study the effect of tokenization on gender bias in machine translation, an aspect that has been largely overlooked in previous works. Specifically, we focus on the interactions between the frequency of gendered profession names in training data, their representation in the subword tokenizer's vocabulary, and gender bias. We observe that female and non-stereotypical gender inflections of profession names (e.g., Spanish "doctora" for "female doctor") tend to be split into multiple subword tokens. Our results indicate that the imbalance of gender forms in the model's training corpus is a major factor contributing to gender bias and has a greater impact than subword splitting. We show that analyzing subword splits provides good estimates of gender-form imbalance in the training data and can be used even when the corpus is not publicly available. We also demonstrate that fine-tuning just the token embedding layer can decrease the gap in gender prediction accuracy between female and male forms without impairing the translation quality.
Graph clustering, which aims to divide the nodes in the graph into several distinct clusters, is a fundamental and challenging task. In recent years, deep graph clustering methods have been increasingly proposed and achieved promising performance. However, the corresponding survey paper is scarce and it is imminent to make a summary in this field. From this motivation, this paper makes the first comprehensive survey of deep graph clustering. Firstly, the detailed definition of deep graph clustering and the important baseline methods are introduced. Besides, the taxonomy of deep graph clustering methods is proposed based on four different criteria including graph type, network architecture, learning paradigm, and clustering method. In addition, through the careful analysis of the existing works, the challenges and opportunities from five perspectives are summarized. At last, the applications of deep graph clustering in four domains are presented. It is worth mentioning that a collection of state-of-the-art deep graph clustering methods including papers, codes, and datasets is available on GitHub. We hope this work will serve as a quick guide and help researchers to overcome challenges in this vibrant field.
Recently, graph neural networks have been gaining a lot of attention to simulate dynamical systems due to their inductive nature leading to zero-shot generalizability. Similarly, physics-informed inductive biases in deep-learning frameworks have been shown to give superior performance in learning the dynamics of physical systems. There is a growing volume of literature that attempts to combine these two approaches. Here, we evaluate the performance of thirteen different graph neural networks, namely, Hamiltonian and Lagrangian graph neural networks, graph neural ODE, and their variants with explicit constraints and different architectures. We briefly explain the theoretical formulation highlighting the similarities and differences in the inductive biases and graph architecture of these systems. We evaluate these models on spring, pendulum, gravitational, and 3D deformable solid systems to compare the performance in terms of rollout error, conserved quantities such as energy and momentum, and generalizability to unseen system sizes. Our study demonstrates that GNNs with additional inductive biases, such as explicit constraints and decoupling of kinetic and potential energies, exhibit significantly enhanced performance. Further, all the physics-informed GNNs exhibit zero-shot generalizability to system sizes an order of magnitude larger than the training system, thus providing a promising route to simulate large-scale realistic systems.
We propose a novel attention gate (AG) model for medical imaging that automatically learns to focus on target structures of varying shapes and sizes. Models trained with AGs implicitly learn to suppress irrelevant regions in an input image while highlighting salient features useful for a specific task. This enables us to eliminate the necessity of using explicit external tissue/organ localisation modules of cascaded convolutional neural networks (CNNs). AGs can be easily integrated into standard CNN architectures such as the U-Net model with minimal computational overhead while increasing the model sensitivity and prediction accuracy. The proposed Attention U-Net architecture is evaluated on two large CT abdominal datasets for multi-class image segmentation. Experimental results show that AGs consistently improve the prediction performance of U-Net across different datasets and training sizes while preserving computational efficiency. The code for the proposed architecture is publicly available.