A proof labelling scheme for a graph class $\mathcal{C}$ is an assignment of certificates to the vertices of any graph in the class $\mathcal{C}$, such that upon reading its certificate and the certificates of its neighbors, every vertex from a graph $G\in \mathcal{C}$ accepts the instance, while if $G\not\in \mathcal{C}$, for every possible assignment of certificates, at least one vertex rejects the instance. It was proved recently that for any fixed surface $\Sigma$, the class of graphs embeddable in $\Sigma$ has a proof labelling scheme in which each vertex of an $n$-vertex graph receives a certificate of at most $O(\log n)$ bits. The proof is quite long and intricate and heavily relies on an earlier result for planar graphs. Here we give a very short proof for any surface. The main idea is to encode a rotation system locally, together with a spanning tree supporting the local computation of the genus via Euler's formula.
The approximate uniform sampling of graph realizations with a given degree sequence is an everyday task in several social science, computer science, engineering etc. projects. One approach is using Markov chains. The best available current result about the well-studied switch Markov chain is that it is rapidly mixing on P-stable degree sequences (see DOI:10.1016/j.ejc.2021.103421). The switch Markov chain does not change any degree sequence. However, there are cases where degree intervals are specified rather than a single degree sequence. (A natural scenario where this problem arises is in hypothesis testing on social networks that are only partially observed.) Rechner, Strowick, and M\"uller-Hannemann introduced in 2018 the notion of degree interval Markov chain which uses three (separately well-studied) local operations (switch, hinge-flip and toggle), and employing on degree sequence realizations where any two sequences under scrutiny have very small coordinate-wise distance. Recently Amanatidis and Kleer published a beautiful paper (arXiv:2110.09068), showing that the degree interval Markov chain is rapidly mixing if the sequences are coming from a system of very thin intervals which are centered not far from a regular degree sequence. In this paper we extend substantially their result, showing that the degree interval Markov chain is rapidly mixing if the intervals are centred at P-stable degree sequences.
Let $\sigma$ be a first-order signature and let $\mathbf{W}_n$ be the set of all $\sigma$-structures with domain $[n] = \{1, \ldots, n\}$. We can think of each structure in $\mathbf{W}_n$ as representing a "possible (state of the) world". By an inference framework we mean a class $\mathbf{F}$ of pairs $(\mathbb{P}, L)$, where $\mathbb{P} = (\mathbb{P}_n : n = 1, 2, 3, \ldots)$ and each $\mathbb{P}_n$ is a probability distribution on $\mathbb{W}_n$, and $L$ is a logic with truth values in the unit interval $[0, 1]$. From the point of view of probabilistic and logical expressivity one may consider an inference framework as optimal if it allows any pair $(\mathbb{P}, L)$ where $\mathbb{P} = (\mathbb{P}_n : n = 1, 2, 3, \ldots)$ is a sequence of probability distributions on $\mathbb{W}_n$ and $L$ is a logic. But from the point of view of using a pair $(\mathbb{P}, L)$ from such an inference framework for making inferences on $\mathbb{W}_n$ when $n$ is large we face the problem of computational complexity. This motivates looking for an "optimal" trade-off (in a given context) between expressivity and computational efficiency. We define a notion that an inference framework is "asymptotically at least as expressive" as another inference framework. This relation is a preorder and we describe a (strict) partial order on the equivalence classes of some inference frameworks that in our opinion are natural in the context of machine learning and artificial intelligence. The results have bearing on issues concerning efficient learning and probabilistic inference, but are also new instances of results in finite model theory about "almost sure elimination" of extra syntactic features (e.g quantifiers) beyond the connectives. Often such a result has a logical convergence law as a corollary.
A partial orientation $\vec{H}$ of a graph $G$ is a weak $r$-guidance system if for any two vertices at distance at most $r$ in $G$, there exists a shortest path $P$ between them such that $\vec{H}$ directs all but one edge in $P$ towards this edge. In case $\vec{H}$ has bounded maximum outdegree, this gives an efficient representation of shortest paths of length at most $r$ in $G$. We show that graphs from many natural graph classes admit such weak guidance systems, and study the algorithmic aspects of this notion.
We describe a polynomial-time algorithm which, given a graph $G$ with treewidth $t$, approximates the pathwidth of $G$ to within a ratio of $O(t\sqrt{\log t})$. This is the first algorithm to achieve an $f(t)$-approximation for some function $f$. Our approach builds on the following key insight: every graph with large pathwidth has large treewidth or contains a subdivision of a large complete binary tree. Specifically, we show that every graph with pathwidth at least $th+2$ has treewidth at least $t$ or contains a subdivision of a complete binary tree of height $h+1$. The bound $th+2$ is best possible up to a multiplicative constant. This result was motivated by, and implies (with $c=2$), the following conjecture of Kawarabayashi and Rossman (SODA'18): there exists a universal constant $c$ such that every graph with pathwidth $\Omega(k^c)$ has treewidth at least $k$ or contains a subdivision of a complete binary tree of height $k$. Our main technical algorithm takes a graph $G$ and some (not necessarily optimal) tree decomposition of $G$ of width $t'$ in the input, and it computes in polynomial time an integer $h$, a certificate that $G$ has pathwidth at least $h$, and a path decomposition of $G$ of width at most $(t'+1)h+1$. The certificate is closely related to (and implies) the existence of a subdivision of a complete binary tree of height $h$. The approximation algorithm for pathwidth is then obtained by combining this algorithm with the approximation algorithm of Feige, Hajiaghayi, and Lee (STOC'05) for treewidth.
We consider the question of adaptive data analysis within the framework of convex optimization. We ask how many samples are needed in order to compute $\epsilon$-accurate estimates of $O(1/\epsilon^2)$ gradients queried by gradient descent, and we provide two intermediate answers to this question. First, we show that for a general analyst (not necessarily gradient descent) $\Omega(1/\epsilon^3)$ samples are required. This rules out the possibility of a foolproof mechanism. Our construction builds upon a new lower bound (that may be of interest of its own right) for an analyst that may ask several non adaptive questions in a batch of fixed and known $T$ rounds of adaptivity and requires a fraction of true discoveries. We show that for such an analyst $\Omega (\sqrt{T}/\epsilon^2)$ samples are necessary. Second, we show that, under certain assumptions on the oracle, in an interaction with gradient descent $\tilde \Omega(1/\epsilon^{2.5})$ samples are necessary. Our assumptions are that the oracle has only \emph{first order access} and is \emph{post-hoc generalizing}. First order access means that it can only compute the gradients of the sampled function at points queried by the algorithm. Our assumption of \emph{post-hoc generalization} follows from existing lower bounds for statistical queries. More generally then, we provide a generic reduction from the standard setting of statistical queries to the problem of estimating gradients queried by gradient descent. These results are in contrast with classical bounds that show that with $O(1/\epsilon^2)$ samples one can optimize the population risk to accuracy of $O(\epsilon)$ but, as it turns out, with spurious gradients.
In this paper, we have proposed a public key cryptography using recursive block matrices involving generalized Fibonacci numbers over a finite field Fp. For this, we define multinacci block matrices, a type of upper triangular matrix involving multinacci matrices at diagonal places and obtained some of its algebraic properties. Moreover, we have set up a method for key element agreement at end users, which makes the cryptography more efficient. The proposed cryptography comes with a large keyspace and its security relies on the Discrete Logarithm Problem(DLP).
In this work, we introduce a novel approach to formulating an artificial viscosity for shock capturing in nonlinear hyperbolic systems by utilizing the property that the solutions of hyperbolic conservation laws are not reversible in time in the vicinity of shocks. The proposed approach does not require any additional governing equations or a priori knowledge of the hyperbolic system in question, is independent of the mesh and approximation order, and requires the use of only one tunable parameter. The primary novelty is that the resulting artificial viscosity is unique for each component of the conservation law which is advantageous for systems in which some components exhibit discontinuities while others do not. The efficacy of the method is shown in numerical experiments of multi-dimensional hyperbolic conservation laws such as nonlinear transport, Euler equations, and ideal magnetohydrodynamics using a high-order discontinuous spectral element method on unstructured grids.
Category theory can be used to state formulas in First-Order Logic without using set membership. Several notable results in logic such as proof of the continuum hypothesis can be elegantly rewritten in category theory. We propose in this paper a reformulation of the usual set-theoretical semantics of the description logic $\mathcal{ALC}$ by using categorical language. In this setting, ALC concepts are represented as objects, concept subsumptions as arrows, and memberships as logical quantifiers over objects and arrows of categories. Such a category-theoretical semantics provides a more modular representation of the semantics of $\mathcal{ALC}$ and a new way to design algorithms for reasoning.
We study the notion of local treewidth in sparse random graphs: the maximum treewidth over all $k$-vertex subgraphs of an $n$-vertex graph. When $k$ is not too large, we give nearly tight bounds for this local treewidth parameter; we also derive tight bounds for the local treewidth of noisy trees, trees where every non-edge is added independently with small probability. We apply our upper bounds on the local treewidth to obtain fixed parameter tractable algorithms (on random graphs and noisy trees) for edge-removal problems centered around containing a contagious process evolving over a network. In these problems, our main parameter of study is $k$, the number of "infected" vertices in the network. For a certain range of parameters the running time of our algorithms on $n$-vertex graphs is $2^{o(k)}\textrm{poly}(n)$, improving upon the $2^{\Omega(k)}\textrm{poly}(n)$ performance of the best-known algorithms designed for worst-case instances of these edge deletion problems.
Medical image segmentation requires consensus ground truth segmentations to be derived from multiple expert annotations. A novel approach is proposed that obtains consensus segmentations from experts using graph cuts (GC) and semi supervised learning (SSL). Popular approaches use iterative Expectation Maximization (EM) to estimate the final annotation and quantify annotator's performance. Such techniques pose the risk of getting trapped in local minima. We propose a self consistency (SC) score to quantify annotator consistency using low level image features. SSL is used to predict missing annotations by considering global features and local image consistency. The SC score also serves as the penalty cost in a second order Markov random field (MRF) cost function optimized using graph cuts to derive the final consensus label. Graph cut obtains a global maximum without an iterative procedure. Experimental results on synthetic images, real data of Crohn's disease patients and retinal images show our final segmentation to be accurate and more consistent than competing methods.