亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Gait disabilities are among the most frequent worldwide. Their treatment relies on rehabilitation therapies, in which smart walkers are being introduced to empower the user's recovery and autonomy, while reducing the clinicians effort. For that, these should be able to decode human motion and needs, as early as possible. Current walkers decode motion intention using information of wearable or embedded sensors, namely inertial units, force and hall sensors, and lasers, whose main limitations imply an expensive solution or hinder the perception of human movement. Smart walkers commonly lack a seamless human-robot interaction, which intuitively understands human motions. A contactless approach is proposed in this work, addressing human motion decoding as an early action recognition/detection problematic, using RGB-D cameras. We studied different deep learning-based algorithms, organised in three different approaches, to process lower body RGB-D video sequences, recorded from an embedded camera of a smart walker, and classify them into 4 classes (stop, walk, turn right/left). A custom dataset involving 15 healthy participants walking with the device was acquired and prepared, resulting in 28800 balanced RGB-D frames, to train and evaluate the deep networks. The best results were attained by a convolutional neural network with a channel attention mechanism, reaching accuracy values of 99.61% and above 93%, for offline early detection/recognition and trial simulations, respectively. Following the hypothesis that human lower body features encode prominent information, fostering a more robust prediction towards real-time applications, the algorithm focus was also evaluated using Dice metric, leading to values slightly higher than 30%. Promising results were attained for early action detection as a human motion decoding strategy, with enhancements in the focus of the proposed architectures.

相關內容

Event cameras have recently gained significant traction since they open up new avenues for low-latency and low-power solutions to complex computer vision problems. To unlock these solutions, it is necessary to develop algorithms that can leverage the unique nature of event data. However, the current state-of-the-art is still highly influenced by the frame-based literature, and usually fails to deliver on these promises. In this work, we take this into consideration and propose a novel self-supervised learning pipeline for the sequential estimation of event-based optical flow that allows for the scaling of the models to high inference frequencies. At its core, we have a continuously-running stateful neural model that is trained using a novel formulation of contrast maximization that makes it robust to nonlinearities and varying statistics in the input events. Results across multiple datasets confirm the effectiveness of our method, which establishes a new state of the art in terms of accuracy for approaches trained or optimized without ground truth.

Capability-based memory isolation is a promising new architectural primitive. Software can access low-level memory only via capability handles rather than raw pointers, which provides a natural interface to enforce security restrictions. Existing architectural capability designs such as CHERI provide spatial safety, but fail to extend to other memory models that security-sensitive software designs may desire. In this paper, we propose Capstone, a more expressive architectural capability design that supports multiple existing memory isolation models in a trustless setup, i.e., without relying on trusted software components. We show how Capstone is well-suited for environments where privilege boundaries are fluid (dynamically extensible), memory sharing/delegation are desired both temporally and spatially, and where such needs are to be balanced with availability concerns. Capstone can also be implemented efficiently. We present an implementation sketch and through evaluation show that its overhead is below 50% in common use cases. We also prototype a functional emulator for Capstone and use it to demonstrate the runnable implementations of six real-world memory models without trusted software components: three types of enclave-based TEEs, a thread scheduler, a memory allocator, and Rust-style memory safety -- all within the interface of Capstone.

Medical waste, i.e. waste produced during medical activities in hospitals, clinics and laboratories, represents hazardous waste whose management involves special care and high costs. However, this kind of waste contains a significant fraction of highly valued materials that can enter a circular economy process. To this end, in this paper, we propose a computer vision approach for assisting in the primary sorting of medical waste. The feasibility of our approach is demonstrated on a representative dataset we collected and made available to the community, with which we have trained a model that achieves 100\% accuracy, and a new dataset on which the trained model exhibits good generalization.

Grounding language to the visual observations of a navigating agent can be performed using off-the-shelf visual-language models pretrained on Internet-scale data (e.g., image captions). While this is useful for matching images to natural language descriptions of object goals, it remains disjoint from the process of mapping the environment, so that it lacks the spatial precision of classic geometric maps. To address this problem, we propose VLMaps, a spatial map representation that directly fuses pretrained visual-language features with a 3D reconstruction of the physical world. VLMaps can be autonomously built from video feed on robots using standard exploration approaches and enables natural language indexing of the map without additional labeled data. Specifically, when combined with large language models (LLMs), VLMaps can be used to (i) translate natural language commands into a sequence of open-vocabulary navigation goals (which, beyond prior work, can be spatial by construction, e.g., "in between the sofa and TV" or "three meters to the right of the chair") directly localized in the map, and (ii) can be shared among multiple robots with different embodiments to generate new obstacle maps on-the-fly (by using a list of obstacle categories). Extensive experiments carried out in simulated and real world environments show that VLMaps enable navigation according to more complex language instructions than existing methods. Videos are available at //vlmaps.github.io.

Inertial sensor has been widely deployed on smartphones, drones, robots and IoT devices. Due to its importance in ubiquitous and robust localization, inertial sensor based positioning is key in many applications, including personal navigation, location based security, and human-device interaction. However, inertial positioning suffers from the so-called error drifts problem, as the measurements of low-cost MEMS inertial sensor are corrupted with various inevitable error sources, leading to unbounded drifts when being integrated doubly in traditional inertial navigation algorithms. Recently, with increasing sensor data and computational power, the fast developments in deep learning have spurred a large amount of research works in introducing deep learning to tackle the problem of inertial positioning. Relevant literature spans from the areas of mobile computing, robotics and machine learning. This article comprehensively reviews relevant works on deep learning based inertial positioning, connects the efforts from different fields, and covers how deep learning can be applied to solve sensor calibration, positioning error drifts reduction and sensor fusion. Finally, we provide insights on the benefits and limitations of existing works, and indicate the future opportunities in this direction.

This paper proposes new, end-to-end deep reinforcement learning algorithms for learning two-player zero-sum Markov games. Different from prior efforts on training agents to beat a fixed set of opponents, our objective is to find the Nash equilibrium policies that are free from exploitation by even the adversarial opponents. We propose (a) Nash-DQN algorithm, which integrates the deep learning techniques from single DQN into the classic Nash Q-learning algorithm for solving tabular Markov games; (b) Nash-DQN-Exploiter algorithm, which additionally adopts an exploiter to guide the exploration of the main agent. We conduct experimental evaluation on tabular examples as well as various two-player Atari games. Our empirical results demonstrate that (i) the policies found by many existing methods including Neural Fictitious Self Play and Policy Space Response Oracle can be prone to exploitation by adversarial opponents; (ii) the output policies of our algorithms are robust to exploitation, and thus outperform existing methods.

When is heterogeneity in the composition of an autonomous robotic team beneficial and when is it detrimental? We investigate and answer this question in the context of a minimally viable model that examines the role of heterogeneous speeds in perimeter defense problems, where defenders share a total allocated speed budget. We consider two distinct problem settings and develop strategies based on dynamic programming and on local interaction rules. We present a theoretical analysis of both approaches and our results are extensively validated using simulations. Interestingly, our results demonstrate that the viability of heterogeneous teams depends on the amount of information available to the defenders. Moreover, our results suggest a universality property: across a wide range of problem parameters the optimal ratio of the speeds of the defenders remains nearly constant.

Human pose estimation aims to locate the human body parts and build human body representation (e.g., body skeleton) from input data such as images and videos. It has drawn increasing attention during the past decade and has been utilized in a wide range of applications including human-computer interaction, motion analysis, augmented reality, and virtual reality. Although the recently developed deep learning-based solutions have achieved high performance in human pose estimation, there still remain challenges due to insufficient training data, depth ambiguities, and occlusions. The goal of this survey paper is to provide a comprehensive review of recent deep learning-based solutions for both 2D and 3D pose estimation via a systematic analysis and comparison of these solutions based on their input data and inference procedures. More than 240 research papers since 2014 are covered in this survey. Furthermore, 2D and 3D human pose estimation datasets and evaluation metrics are included. Quantitative performance comparisons of the reviewed methods on popular datasets are summarized and discussed. Finally, the challenges involved, applications, and future research directions are concluded. We also provide a regularly updated project page on: \url{//github.com/zczcwh/DL-HPE}

Named entity recognition (NER) is the task to identify text spans that mention named entities, and to classify them into predefined categories such as person, location, organization etc. NER serves as the basis for a variety of natural language applications such as question answering, text summarization, and machine translation. Although early NER systems are successful in producing decent recognition accuracy, they often require much human effort in carefully designing rules or features. In recent years, deep learning, empowered by continuous real-valued vector representations and semantic composition through nonlinear processing, has been employed in NER systems, yielding stat-of-the-art performance. In this paper, we provide a comprehensive review on existing deep learning techniques for NER. We first introduce NER resources, including tagged NER corpora and off-the-shelf NER tools. Then, we systematically categorize existing works based on a taxonomy along three axes: distributed representations for input, context encoder, and tag decoder. Next, we survey the most representative methods for recent applied techniques of deep learning in new NER problem settings and applications. Finally, we present readers with the challenges faced by NER systems and outline future directions in this area.

Multivariate time series forecasting is extensively studied throughout the years with ubiquitous applications in areas such as finance, traffic, environment, etc. Still, concerns have been raised on traditional methods for incapable of modeling complex patterns or dependencies lying in real word data. To address such concerns, various deep learning models, mainly Recurrent Neural Network (RNN) based methods, are proposed. Nevertheless, capturing extremely long-term patterns while effectively incorporating information from other variables remains a challenge for time-series forecasting. Furthermore, lack-of-explainability remains one serious drawback for deep neural network models. Inspired by Memory Network proposed for solving the question-answering task, we propose a deep learning based model named Memory Time-series network (MTNet) for time series forecasting. MTNet consists of a large memory component, three separate encoders, and an autoregressive component to train jointly. Additionally, the attention mechanism designed enable MTNet to be highly interpretable. We can easily tell which part of the historic data is referenced the most.

北京阿比特科技有限公司