亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In the emerging field of mechanical metamaterials, using periodic lattice structures as a primary ingredient is relatively frequent. However, the choice of aperiodic lattices in these structures presents unique advantages regarding failure, e.g., buckling or fracture, because avoiding repeated patterns prevents global failures, with local failures occurring in turn that can beneficially delay structural collapse. Therefore, it is expedient to develop models for computing efficiently the effective mechanical properties in lattices from different general features while addressing the challenge of presenting topologies (or graphs) of different sizes. In this paper, we develop a deep learning model to predict energetically-equivalent mechanical properties of linear elastic lattices effectively. Considering the lattice as a graph and defining material and geometrical features on such, we show that Graph Neural Networks provide more accurate predictions than a dense, fully connected strategy, thanks to the geometrically induced bias through graph representation, closer to the underlying equilibrium laws from mechanics solved in the direct problem. Leveraging the efficient forward-evaluation of a vast number of lattices using this surrogate enables the inverse problem, i.e., to obtain a structure having prescribed specific behavior, which is ultimately suitable for multiscale structural optimization problems.

相關內容

We explore theoretical aspects of boundary conditions for lattice Boltzmann methods, focusing on a toy two-velocities scheme. By mapping lattice Boltzmann schemes to Finite Difference schemes, we facilitate rigorous consistency and stability analyses. We develop kinetic boundary conditions for inflows and outflows, highlighting the trade-off between accuracy and stability, which we successfully overcome. Stability is assessed using GKS (Gustafsson, Kreiss, and Sundstr{\"o}m) analysis and -- when this approach fails on coarse meshes -- spectral and pseudo-spectral analyses of the scheme's matrix that explain effects germane to low resolutions.

We show that the limiting variance of a sequence of estimators for a structured covariance matrix has a general form that appears as the variance of a scaled projection of a random matrix that is of radial type and a similar result is obtained for the corresponding sequence of estimators for the vector of variance components. These results are illustrated by the limiting behavior of estimators for a linear covariance structure in a variety of multivariate statistical models. We also derive a characterization for the influence function of corresponding functionals. Furthermore, we derive the limiting distribution and influence function of scale invariant mappings of such estimators and their corresponding functionals. As a consequence, the asymptotic relative efficiency of different estimators for the shape component of a structured covariance matrix can be compared by means of a single scalar and the gross error sensitivity of the corresponding influence functions can be compared by means of a single index. Similar results are obtained for estimators of the normalized vector of variance components. We apply our results to investigate how the efficiency, gross error sensitivity, and breakdown point of S-estimators for the normalized variance components are affected simultaneously by varying their cutoff value.

While undulatory swimming of elongate limbless robots has been extensively studied in open hydrodynamic environments, less research has been focused on limbless locomotion in complex, cluttered aquatic environments. Motivated by the concept of mechanical intelligence, where controls for obstacle navigation can be offloaded to passive body mechanics in terrestrial limbless locomotion, we hypothesize that principles of mechanical intelligence can be extended to cluttered hydrodynamic regimes. To test this, we developed an untethered limbless robot capable of undulatory swimming on water surfaces, utilizing a bilateral cable-driven mechanism inspired by organismal muscle actuation morphology to achieve programmable anisotropic body compliance. We demonstrated through robophysical experiments that, similar to terrestrial locomotion, an appropriate level of body compliance can facilitate emergent swim through complex hydrodynamic environments under pure open-loop control. Moreover, we found that swimming performance depends on undulation frequency, with effective locomotion achieved only within a specific frequency range. This contrasts with highly damped terrestrial regimes, where inertial effects can often be neglected. Further, to enhance performance and address the challenges posed by nondeterministic obstacle distributions, we incorporated computational intelligence by developing a real-time body compliance tuning controller based on cable tension feedback. This controller improves the robot's robustness and overall speed in heterogeneous hydrodynamic environments.

We present a new hybrid semi-implicit finite volume / finite element numerical scheme for the solution of incompressible and weakly compressible media. From the continuum mechanics model proposed by Godunov, Peshkov and Romenski (GPR), we derive the incompressible GPR formulation as well as a weakly compressible GPR system. As for the original GPR model, the new formulations are able to describe different media, from elastoplastic solids to viscous fluids, depending on the values set for the model's relaxation parameters. Then, we propose a new numerical method for the solution of both models based on the splitting of the original systems into three subsystems: one containing the convective part and non-conservative products, a second subsystem for the source terms of the distortion tensor and heat flux equations and, finally, a pressure subsystem. In the first stage of the algorithm, the transport subsystem is solved by employing an explicit finite volume method, while the source terms are solved implicitly. Next, the pressure subsystem is implicitly discretised using finite elements. Within this methodology, unstructured grids are employed, with the pressure defined in the primal grid and the rest of the variables computed in the dual grid. To evaluate the performance of the proposed scheme, a numerical convergence analysis is carried out, which confirms the second order of accuracy in space. A wide range of benchmarks is reproduced for the incompressible and weakly compressible cases, considering both solid and fluid media. These results demonstrate the good behaviour and robustness of the proposed scheme in a variety of scenarios and conditions.

The integrated nested Laplace approximation (INLA) method has become a popular approach for computationally efficient approximate Bayesian computation. In particular, by leveraging sparsity in random effect precision matrices, INLA is commonly used in spatial and spatio-temporal applications. However, the speed of INLA comes at the cost of restricting the user to the family of latent Gaussian models and the likelihoods currently implemented in {INLA}, the main software implementation of the INLA methodology. {inlabru} is a software package that extends the types of models that can be fitted using INLA by allowing the latent predictor to be non-linear in its parameters, moving beyond the additive linear predictor framework to allow more complex functional relationships. For inference it uses an approximate iterative method based on the first-order Taylor expansion of the non-linear predictor, fitting the model using INLA for each linearised model configuration. {inlabru} automates much of the workflow required to fit models using {R-INLA}, simplifying the process for users to specify, fit and predict from models. There is additional support for fitting joint likelihood models by building each likelihood individually. {inlabru} also supports the direct use of spatial data structures, such as those implemented in the {sf} and {terra} packages. In this paper we outline the statistical theory, model structure and basic syntax required for users to understand and develop their own models using {inlabru}. We evaluate the approximate inference method using a Bayesian method checking approach. We provide three examples modelling simulated spatial data that demonstrate the benefits of the additional flexibility provided by {inlabru}.

We derive the Alternating-Direction Implicit (ADI) method based on a commuting operator split and apply the results to the continuous time algebraic Lyapunov equation with low-rank constant term and approximate solution. Previously, it has been mandatory to start the low-rank ADI (LR-ADI) with an all-zero initial value. Our approach retains the known efficient iteration schemes of low-rank increments and residual to arbitrary low-rank initial values for the LR-ADI method. We further generalize some of the known properties of the LR-ADI for Lyapunov equations to larger classes of algorithms or problems. We investigate the performance of arbitrary initial values using two outer iterations in which LR-ADI is typically called. First, we solve an algebraic Riccati equation with the Newton method. Second, we solve a differential Riccati equation with a first-order Rosenbrock method. Numerical experiments confirm that the proposed new initial value of the alternating-directions implicit (ADI) can lead to a significant reduction in the total number of ADI steps, while also showing a 17% and 8x speed-up over the zero initial value for the two equation types, respectively.

We address the problem of the best uniform approximation of a continuous function on a convex domain. The approximation is by linear combinations of a finite system of functions (not necessarily Chebyshev) under arbitrary linear constraints. By modifying the concept of alternance and of the Remez iterative procedure we present a method, which demonstrates its efficiency in numerical problems. The linear rate of convergence is proved under some favourable assumptions. A special attention is paid to systems of complex exponents, Gaussian functions, lacunar algebraic and trigonometric polynomials. Applications to signal processing, linear ODE, switching dynamical systems, and to Markov-Bernstein type inequalities are considered.

We posit that data can only be safe to use up to a certain threshold of the data distribution shift, after which control must be relinquished by the autonomous system and operation halted or handed to a human operator. With the use of a computer vision toy example we demonstrate that network predictive accuracy is impacted by data distribution shifts and propose distance metrics between training and testing data to define safe operation limits within said shifts. We conclude that beyond an empirically obtained threshold of the data distribution shift, it is unreasonable to expect network predictive accuracy not to degrade

An essential problem in statistics and machine learning is the estimation of expectations involving PDFs with intractable normalizing constants. The self-normalized importance sampling (SNIS) estimator, which normalizes the IS weights, has become the standard approach due to its simplicity. However, the SNIS has been shown to exhibit high variance in challenging estimation problems, e.g, involving rare events or posterior predictive distributions in Bayesian statistics. Further, most of the state-of-the-art adaptive importance sampling (AIS) methods adapt the proposal as if the weights had not been normalized. In this paper, we propose a framework that considers the original task as estimation of a ratio of two integrals. In our new formulation, we obtain samples from a joint proposal distribution in an extended space, with two of its marginals playing the role of proposals used to estimate each integral. Importantly, the framework allows us to induce and control a dependency between both estimators. We propose a construction of the joint proposal that decomposes in two (multivariate) marginals and a coupling. This leads to a two-stage framework suitable to be integrated with existing or new AIS and/or variational inference (VI) algorithms. The marginals are adapted in the first stage, while the coupling can be chosen and adapted in the second stage. We show in several examples the benefits of the proposed methodology, including an application to Bayesian prediction with misspecified models.

In the field of materials science and manufacturing, a vast amount of heterogeneous data exists, encompassing measurement and simulation data, machine data, publications, and more. This data serves as the bedrock of valuable knowledge that can be leveraged for various engineering applications. However, efficiently storing and handling such diverse data remain significantly challenging, often due to the lack of standardization and integration across different organizational units. Addressing these issues is crucial for fully utilizing the potential of data-driven approaches in these fields. In this paper, we present a novel technology stack named Dataspace Management System (DSMS) for powering dataspace solutions. The core of DSMS lies on its distinctive knowledge management approach tuned to meet the specific demands of the materials science and manufacturing domain, all while adhering to the FAIR principles. This includes data integration, linkage, exploration, visualization, processing, and enrichment, in order to support engineers in decision-making and in solving design and optimization problems. We provide an architectural overview and describe the core components of DSMS. Additionally, we demonstrate the applicability of DSMS to typical data processing tasks in materials science through use cases from two research projects, namely StahlDigital and KupferDigital, both part of the German MaterialDigital initiative.

北京阿比特科技有限公司