亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Apache TVM (Tensor Virtual Machine), an open source machine learning compiler framework designed to optimize computations across various hardware platforms, provides an opportunity to improve the performance of dense matrix factorizations such as LU (Lower Upper) decomposition and Cholesky decomposition on GPUs and AI (Artificial Intelligence) accelerators. In this paper, we propose a new TVM autotuning framework using Bayesian Optimization and use the TVM tensor expression language to implement linear algebra kernels such as LU, Cholesky, and 3mm. We use these scientific computation kernels to evaluate the effectiveness of our methods on a GPU cluster, called Swing, at Argonne National Laboratory. We compare the proposed autotuning framework with the TVM autotuning framework AutoTVM with four tuners and find that our framework outperforms AutoTVM in most cases.

相關內容

We introduce EV3, a novel meta-optimization framework designed to efficiently train scalable machine learning models through an intuitive explore-assess-adapt protocol. In each iteration of EV3, we explore various model parameter updates, assess them using pertinent evaluation methods, and adapt the model based on the optimal updates and previous progress history. EV3 offers substantial flexibility without imposing stringent constraints like differentiability on the key objectives relevant to the tasks of interest. Moreover, this protocol welcomes updates with biased gradients and allows for the use of a diversity of losses and optimizers. Additionally, in scenarios with multiple objectives, it can be used to dynamically prioritize tasks. With inspiration drawn from evolutionary algorithms, meta-learning, and neural architecture search, we investigate an application of EV3 to knowledge distillation. Our experimental results illustrate EV3's capability to safely explore model spaces, while hinting at its potential applicability across numerous domains due to its inherent flexibility and adaptability.

CLIP, one of the pioneering foundation models that connect images and text, has enabled many recent breakthroughs in computer vision. However, its associated training cost is prohibitively high, imposing a significant barrier to its widespread exploration. In this paper, we present a surprising finding that there exists an inverse scaling law for CLIP training, whereby the larger the image/text encoders used, the shorter the sequence length of image/text tokens that can be applied in training. Moreover, we showcase that the strategy for reducing image/text token length plays a crucial role in determining the quality of this scaling law. As a result of this finding, we are able to successfully train CLIP even with limited computational resources. For example, using 8 A100 GPUs, our CLIP models achieve zero-shot top-1 ImageNet-1k accuracies of 63.2% in ~2 days, 67.8% in ~3 days, and 69.3% in ~4 days. Our method also works well when scaling up -- with G/14, we register a new record of 83.0% ImageNet-1k zero-shot accuracy, and meanwhile accelerate the training by ~33x compared to its OpenCLIP counterpart. By reducing the computation barrier associated with CLIP, we hope to inspire more research in this field, particularly from academics. Our code is available at //github.com/UCSC-VLAA/CLIPA.

This paper proposes a generalized Firefly Algorithm (FA) to solve an optimization framework having objective function and constraints as multivariate functions of independent optimization variables. Four representative examples of how the proposed generalized FA can be adopted to solve downlink beamforming problems are shown for a classic transmit beamforming, cognitive beamforming, reconfigurable-intelligent-surfaces-aided (RIS-aided) transmit beamforming, and RIS-aided wireless power transfer (WPT). Complexity analyzes indicate that in large-antenna regimes the proposed FA approaches require less computational complexity than their corresponding interior point methods (IPMs) do, yet demand a higher complexity than the iterative and the successive convex approximation (SCA) approaches do. Simulation results reveal that the proposed FA attains the same global optimal solution as that of the IPM for an optimization problem in cognitive beamforming. On the other hand, the proposed FA approaches outperform the iterative, IPM and SCA in terms of obtaining better solution for optimization problems, respectively, for a classic transmit beamforming, RIS-aided transmit beamforming and RIS-aided WPT.

We introduce IMP-MARL, an open-source suite of multi-agent reinforcement learning (MARL) environments for large-scale Infrastructure Management Planning (IMP), offering a platform for benchmarking the scalability of cooperative MARL methods in real-world engineering applications. In IMP, a multi-component engineering system is subject to a risk of failure due to its components' damage condition. Specifically, each agent plans inspections and repairs for a specific system component, aiming to minimise maintenance costs while cooperating to minimise system failure risk. With IMP-MARL, we release several environments including one related to offshore wind structural systems, in an effort to meet today's needs to improve management strategies to support sustainable and reliable energy systems. Supported by IMP practical engineering environments featuring up to 100 agents, we conduct a benchmark campaign, where the scalability and performance of state-of-the-art cooperative MARL methods are compared against expert-based heuristic policies. The results reveal that centralised training with decentralised execution methods scale better with the number of agents than fully centralised or decentralised RL approaches, while also outperforming expert-based heuristic policies in most IMP environments. Based on our findings, we additionally outline remaining cooperation and scalability challenges that future MARL methods should still address. Through IMP-MARL, we encourage the implementation of new environments and the further development of MARL methods.

Conversational Recommender Systems (CRS) illuminate user preferences via multi-round interactive dialogues, ultimately navigating towards precise and satisfactory recommendations. However, contemporary CRS are limited to inquiring binary or multi-choice questions based on a single attribute type (e.g., color) per round, which causes excessive rounds of interaction and diminishes the user's experience. To address this, we propose a more realistic and efficient conversational recommendation problem setting, called Multi-Type-Attribute Multi-round Conversational Recommendation (MTAMCR), which enables CRS to inquire about multi-choice questions covering multiple types of attributes in each round, thereby improving interactive efficiency. Moreover, by formulating MTAMCR as a hierarchical reinforcement learning task, we propose a Chain-of-Choice Hierarchical Policy Learning (CoCHPL) framework to enhance both the questioning efficiency and recommendation effectiveness in MTAMCR. Specifically, a long-term policy over options (i.e., ask or recommend) determines the action type, while two short-term intra-option policies sequentially generate the chain of attributes or items through multi-step reasoning and selection, optimizing the diversity and interdependence of questioning attributes. Finally, extensive experiments on four benchmarks demonstrate the superior performance of CoCHPL over prevailing state-of-the-art methods.

Graph Neural Networks (GNNs) are powerful in learning semantics of graph data. Recently, a new paradigm "pre-train, prompt" has shown promising results in adapting GNNs to various tasks with less supervised data. The success of such paradigm can be attributed to the more consistent objectives of pre-training and task-oriented prompt tuning, where the pre-trained knowledge can be effectively transferred to downstream tasks. However, an overlooked issue of existing studies is that the structure information of graph is usually exploited during pre-training for learning node representations, while neglected in the prompt tuning stage for learning task-specific parameters. To bridge this gap, we propose a novel structure-based prompting method for GNNs, namely SAP, which consistently exploits structure information in both pre-training and prompt tuning stages. In particular, SAP 1) employs a dual-view contrastive learning to align the latent semantic spaces of node attributes and graph structure, and 2) incorporates structure information in prompted graph to elicit more pre-trained knowledge in prompt tuning. We conduct extensive experiments on node classification and graph classification tasks to show the effectiveness of SAP. Moreover, we show that SAP can lead to better performance in more challenging few-shot scenarios on both homophilous and heterophilous graphs.

Offline reinforcement learning (RL) aims to optimize policy using collected data without online interactions. Model-based approaches are particularly appealing for addressing offline RL challenges due to their capability to mitigate the limitations of offline data through data generation using models. Prior research has demonstrated that introducing conservatism into the model or Q-function during policy optimization can effectively alleviate the prevalent distribution drift problem in offline RL. However, the investigation into the impacts of conservatism in reward estimation is still lacking. This paper proposes a novel model-based offline RL algorithm, Conservative Reward for model-based Offline Policy optimization (CROP), which conservatively estimates the reward in model training. To achieve a conservative reward estimation, CROP simultaneously minimizes the estimation error and the reward of random actions. Theoretical analysis shows that this conservative reward mechanism leads to a conservative policy evaluation and helps mitigate distribution drift. Experiments on D4RL benchmarks showcase that the performance of CROP is comparable to the state-of-the-art baselines. Notably, CROP establishes an innovative connection between offline and online RL, highlighting that offline RL problems can be tackled by adopting online RL techniques to the empirical Markov decision process trained with a conservative reward. The source code is available with //github.com/G0K0URURI/CROP.git.

Recent contrastive representation learning methods rely on estimating mutual information (MI) between multiple views of an underlying context. E.g., we can derive multiple views of a given image by applying data augmentation, or we can split a sequence into views comprising the past and future of some step in the sequence. Contrastive lower bounds on MI are easy to optimize, but have a strong underestimation bias when estimating large amounts of MI. We propose decomposing the full MI estimation problem into a sum of smaller estimation problems by splitting one of the views into progressively more informed subviews and by applying the chain rule on MI between the decomposed views. This expression contains a sum of unconditional and conditional MI terms, each measuring modest chunks of the total MI, which facilitates approximation via contrastive bounds. To maximize the sum, we formulate a contrastive lower bound on the conditional MI which can be approximated efficiently. We refer to our general approach as Decomposed Estimation of Mutual Information (DEMI). We show that DEMI can capture a larger amount of MI than standard non-decomposed contrastive bounds in a synthetic setting, and learns better representations in a vision domain and for dialogue generation.

Federated Learning (FL) is a decentralized machine-learning paradigm, in which a global server iteratively averages the model parameters of local users without accessing their data. User heterogeneity has imposed significant challenges to FL, which can incur drifted global models that are slow to converge. Knowledge Distillation has recently emerged to tackle this issue, by refining the server model using aggregated knowledge from heterogeneous users, other than directly averaging their model parameters. This approach, however, depends on a proxy dataset, making it impractical unless such a prerequisite is satisfied. Moreover, the ensemble knowledge is not fully utilized to guide local model learning, which may in turn affect the quality of the aggregated model. Inspired by the prior art, we propose a data-free knowledge distillation} approach to address heterogeneous FL, where the server learns a lightweight generator to ensemble user information in a data-free manner, which is then broadcasted to users, regulating local training using the learned knowledge as an inductive bias. Empirical studies powered by theoretical implications show that, our approach facilitates FL with better generalization performance using fewer communication rounds, compared with the state-of-the-art.

The potential of graph convolutional neural networks for the task of zero-shot learning has been demonstrated recently. These models are highly sample efficient as related concepts in the graph structure share statistical strength allowing generalization to new classes when faced with a lack of data. However, knowledge from distant nodes can get diluted when propagating through intermediate nodes, because current approaches to zero-shot learning use graph propagation schemes that perform Laplacian smoothing at each layer. We show that extensive smoothing does not help the task of regressing classifier weights in zero-shot learning. In order to still incorporate information from distant nodes and utilize the graph structure, we propose an Attentive Dense Graph Propagation Module (ADGPM). ADGPM allows us to exploit the hierarchical graph structure of the knowledge graph through additional connections. These connections are added based on a node's relationship to its ancestors and descendants and an attention scheme is further used to weigh their contribution depending on the distance to the node. Finally, we illustrate that finetuning of the feature representation after training the ADGPM leads to considerable improvements. Our method achieves competitive results, outperforming previous zero-shot learning approaches.

北京阿比特科技有限公司