Neural networks have been able to generate high-quality single-sentence speech with high expressiveness. However, it remains a challenge concerning paragraph-level speech synthesis due to the need for coherent acoustic features while delivering sentence styles. Meanwhile, training those models directly on over-length speech suffers from degrading synthesizing quality. This paper proposes a high-quality and expressive paragraph speech synthesis system with a multi-step variational autoencoder. Our approach employs multi-step latent variables to capture speech information and predicts them with text information separately at different grammatical levels. We also propose a three-step training method to promote the performance of the decoupling process. The proposed TTS model was trained on a single-speaker French audiobook corpus released at Blizzard Challenge 2023. Experimental results underscore the significant superiority of our system over baseline models.
Recurrent neural networks (RNNs) have yielded promising results for both recognizing objects in challenging conditions and modeling aspects of primate vision. However, the representational dynamics of recurrent computations remain poorly understood, especially in large-scale visual models. Here, we studied such dynamics in RNNs trained for object classification on MiniEcoset, a novel subset of ecoset. We report two main insights. First, upon inference, representations continued to evolve after correct classification, suggesting a lack of the notion of being ``done with classification''. Second, focusing on ``readout zones'' as a way to characterize the activation trajectories, we observe that misclassified representations exhibit activation patterns with lower L2 norm, and are positioned more peripherally in the readout zones. Such arrangements help the misclassified representations move into the correct zones as time progresses. Our findings generalize to networks with lateral and top-down connections, and include both additive and multiplicative interactions with the bottom-up sweep. The results therefore contribute to a general understanding of RNN dynamics in naturalistic tasks. We hope that the analysis framework will aid future investigations of other types of RNNs, including understanding of representational dynamics in primate vision.
In this paper, we propose nonlocal diffusion models with Dirichlet boundary. These nonlocal diffusion models preserve the maximum principle and also have corresponding variational form. With these good properties, It is relatively easy to prove the well-posedness and the vanishing nonlocality convergence. Furthermore, by specifically designed weight function, we can get a nonlocal diffusion model with second order convergence which is optimal for nonlocal diffusion models.
This paper introduces and studies the sequential composition and decomposition of propositional logic programs. We show that acyclic programs can be decomposed into single-rule programs and provide a general decomposition result for arbitrary programs. We show that the immediate consequence operator of a program can be represented via composition which allows us to compute its least model without any explicit reference to operators. This bridges the conceptual gap between the syntax and semantics of a propositional logic program in a mathematically satisfactory way.
In this article we present new results on neural networks with linear threshold activation functions. We precisely characterize the class of functions that are representable by such neural networks and show that 2 hidden layers are necessary and sufficient to represent any function representable in the class. This is a surprising result in the light of recent exact representability investigations for neural networks using other popular activation functions like rectified linear units (ReLU). We also give precise bounds on the sizes of the neural networks required to represent any function in the class. Finally, we design an algorithm to solve the empirical risk minimization (ERM) problem to global optimality for these neural networks with a fixed architecture. The algorithm's running time is polynomial in the size of the data sample, if the input dimension and the size of the network architecture are considered fixed constants. The algorithm is unique in the sense that it works for any architecture with any number of layers, whereas previous polynomial time globally optimal algorithms work only for very restricted classes of architectures. Using these insights, we propose a new class of neural networks that we call shortcut linear threshold networks. To the best of our knowledge, this way of designing neural networks has not been explored before in the literature. We show that these neural networks have several desirable theoretical properties.
Recently, large pre-trained multilingual speech models have shown potential in scaling Automatic Speech Recognition (ASR) to many low-resource languages. Some of these models employ language adapters in their formulation, which helps to improve monolingual performance and avoids some of the drawbacks of multi-lingual modeling on resource-rich languages. However, this formulation restricts the usability of these models on code-switched speech, where two languages are mixed together in the same utterance. In this work, we propose ways to effectively fine-tune such models on code-switched speech, by assimilating information from both language adapters at each language adaptation point in the network. We also model code-switching as a sequence of latent binary sequences that can be used to guide the flow of information from each language adapter at the frame level. The proposed approaches are evaluated on three code-switched datasets encompassing Arabic, Mandarin, and Hindi languages paired with English, showing consistent improvements in code-switching performance with at least 10\% absolute reduction in CER across all test sets.
Textless speech-to-speech translation systems are rapidly advancing, thanks to the integration of self-supervised learning techniques. However, existing state-of-the-art systems fall short when it comes to capturing and transferring expressivity accurately across different languages. Expressivity plays a vital role in conveying emotions, nuances, and cultural subtleties, thereby enhancing communication across diverse languages. To address this issue this study presents a novel method that operates at the discrete speech unit level and leverages multilingual emotion embeddings to capture language-agnostic information. Specifically, we demonstrate how these embeddings can be used to effectively predict the pitch and duration of speech units in the target language. Through objective and subjective experiments conducted on a French-to-English translation task, our findings highlight the superior expressivity transfer achieved by our approach compared to current state-of-the-art systems.
With the emergence of Transformer architectures and their powerful understanding of textual data, a new horizon has opened up to predict the molecular properties based on text description. While SMILES are the most common form of representation, they are lacking robustness, rich information and canonicity, which limit their effectiveness in becoming generalizable representations. Here, we present GPT-MolBERTa, a self-supervised large language model (LLM) which uses detailed textual descriptions of molecules to predict their properties. A text based description of 326000 molecules were collected using ChatGPT and used to train LLM to learn the representation of molecules. To predict the properties for the downstream tasks, both BERT and RoBERTa models were used in the finetuning stage. Experiments show that GPT-MolBERTa performs well on various molecule property benchmarks, and approaching state of the art performance in regression tasks. Additionally, further analysis of the attention mechanisms show that GPT-MolBERTa is able to pick up important information from the input textual data, displaying the interpretability of the model.
Artificial neural networks are prone to being fooled by carefully perturbed inputs which cause an egregious misclassification. These \textit{adversarial} attacks have been the focus of extensive research. Likewise, there has been an abundance of research in ways to detect and defend against them. We introduce a novel approach of detection and interpretation of adversarial attacks from a graph perspective. For an input image, we compute an associated sparse graph using the layer-wise relevance propagation algorithm \cite{bach15}. Specifically, we only keep edges of the neural network with the highest relevance values. Three quantities are then computed from the graph which are then compared against those computed from the training set. The result of the comparison is a classification of the image as benign or adversarial. To make the comparison, two classification methods are introduced: 1) an explicit formula based on Wasserstein distance applied to the degree of node and 2) a logistic regression. Both classification methods produce strong results which lead us to believe that a graph-based interpretation of adversarial attacks is valuable.
Introduction: The amount of data generated by original research is growing exponentially. Publicly releasing them is recommended to comply with the Open Science principles. However, data collected from human participants cannot be released as-is without raising privacy concerns. Fully synthetic data represent a promising answer to this challenge. This approach is explored by the French Centre de Recherche en {\'E}pid{\'e}miologie et Sant{\'e} des Populations in the form of a synthetic data generation framework based on Classification and Regression Trees and an original distance-based filtering. The goal of this work was to develop a refined version of this framework and to assess its risk-utility profile with empirical and formal tools, including novel ones developed for the purpose of this evaluation.Materials and Methods: Our synthesis framework consists of four successive steps, each of which is designed to prevent specific risks of disclosure. We assessed its performance by applying two or more of these steps to a rich epidemiological dataset. Privacy and utility metrics were computed for each of the resulting synthetic datasets, which were further assessed using machine learning approaches.Results: Computed metrics showed a satisfactory level of protection against attribute disclosure attacks for each synthetic dataset, especially when the full framework was used. Membership disclosure attacks were formally prevented without significantly altering the data. Machine learning approaches showed a low risk of success for simulated singling out and linkability attacks. Distributional and inferential similarity with the original data were high with all datasets.Discussion: This work showed the technical feasibility of generating publicly releasable synthetic data using a multi-step framework. Formal and empirical tools specifically developed for this demonstration are a valuable contribution to this field. Further research should focus on the extension and validation of these tools, in an effort to specify the intrinsic qualities of alternative data synthesis methods.Conclusion: By successfully assessing the quality of data produced using a novel multi-step synthetic data generation framework, we showed the technical and conceptual soundness of the Open-CESP initiative, which seems ripe for full-scale implementation.
Sequential location recommendation plays a huge role in modern life, which can enhance user experience, bring more profit to businesses and assist in government administration. Although methods for location recommendation have evolved significantly thanks to the development of recommendation systems, there is still limited utilization of geographic information, along with the ongoing challenge of addressing data sparsity. In response, we introduce a Proximity-aware based region representation for Sequential Recommendation (PASR for short), built upon the Self-Attention Network architecture. We tackle the sparsity issue through a novel loss function employing importance sampling, which emphasizes informative negative samples during optimization. Moreover, PASR enhances the integration of geographic information by employing a self-attention-based geography encoder to the hierarchical grid and proximity grid at each GPS point. To further leverage geographic information, we utilize the proximity-aware negative samplers to enhance the quality of negative samples. We conducted evaluations using three real-world Location-Based Social Networking (LBSN) datasets, demonstrating that PASR surpasses state-of-the-art sequential location recommendation methods