Green Light Optimal Speed Advisory (GLOSA) system suggests speeds to vehicles to assist them in passing through intersections during green intervals, thus reducing traffic congestion and fuel consumption by minimizing the number of stops and idle times at intersections. However, previous research has focused on optimizing the GLOSA algorithm, neglecting the frequency of speed advisory by the GLOSA system. Specifically, some studies provide speed advisory profile at each decision step, resulting in redundant advisory, while others calculate the optimal speed for the vehicle only once, which cannot adapt to dynamic traffic. In this paper, we propose an Adaptive Frequency GLOSA (AF-GLOSA) model based on Hybrid Proximal Policy Optimization (H-PPO) method, which employs an actor-critic architecture with a hybrid actor network. The hybrid actor network consists of a discrete actor that outputs control gap and a continuous actor that outputs acceleration profiles. Additionally, we design a novel reward function that considers both travel efficiency and fuel consumption. The AF-GLOSA model is evaluated in comparison to traditional GLOSA and learning-based GLOSA methods in a three-lane intersection with a traffic signal in SUMO. The results demonstrate that the AF-GLOSA model performs best in reducing average stop times, fuel consumption and CO2 emissions.
We present novel cross-sectional and longitudinal claim count models for vehicle insurance built upon the Combined Actuarial Neural Network (CANN) framework proposed by Mario W\"uthrich and Michael Merz. The CANN approach combines a classical actuarial model, such as a generalized linear model, with a neural network. This blending of models results in a two-component model comprising a classical regression model and a neural network part. The CANN model leverages the strengths of both components, providing a solid foundation and interpretability from the classical model while harnessing the flexibility and capacity to capture intricate relationships and interactions offered by the neural network. In our proposed models, we use well-known log-linear claim count regression models for the classical regression part and a multilayer perceptron (MLP) for the neural network part. The MLP part is used to process telematics car driving data given as a vector characterizing the driving behavior of each insured driver. In addition to the Poisson and negative binomial distributions for cross-sectional data, we propose a procedure for training our CANN model with a multivariate negative binomial (MVNB) specification. By doing so, we introduce a longitudinal model that accounts for the dependence between contracts from the same insured. Our results reveal that the CANN models exhibit superior performance compared to log-linear models that rely on manually engineered telematics features.
This paper presents a Pre-Training Deep Reinforcement Learning(DRL) for avoidance navigation without map for mobile robots which map raw sensor data to control variable and navigate in an unknown environment. The efficient offline training strategy is proposed to speed up the inefficient random explorations in early stage and we also collect a universal dataset including expert experience for offline training, which is of some significance for other navigation training work. The pre-training and prioritized expert experience are proposed to reduce 80\% training time and has been verified to improve the 2 times reward of DRL. The advanced simulation gazebo with real physical modelling and dynamic equations reduce the gap between sim-to-real. We train our model a corridor environment, and evaluate the model in different environment getting the same effect. Compared to traditional method navigation, we can confirm the trained model can be directly applied into different scenarios and have the ability to no collision navigate. It was demonstrated that our DRL model have universal general capacity in different environment.
Self Sovereign Identity (SSI) is an emerging identity system that facilitates secure credential issuance and verification without placing trust in any centralised authority. To bypass central trust, most SSI implementations place blockchain as a trusted mediator by placing credential transactions on-chain. Yet, existing SSI platforms face trust issues as all credential issuers in SSI are not supported with adequate trust. Current SSI solutions provide trust support to the officiated issuers (e.g., government agencies), who must follow a precise process to assess their credentials. However, there is no structured trust support for individuals of SSI who may attempt to issue a credential (e.g., letter of consent) in the context of business processes. Therefore, some risk-averse verifiers in the system may not accept the credentials from individual issuers to avoid carrying the cost of mishaps from potentially inadmissible credentials without reliance on a trusted agency. This paper proposes a trust propagation protocol that supports individual users to be trusted as verifiable issuers in the SSI platform by establishing a trust propagation credential template in the blockchain. Our approach utilises (i) the sanitizable signature scheme to propagate the required trust to an individual issuer, (ii) a voting mechanism to minimises the possibility of collusion. Our implementation demonstrates that the solution is both practical and performs well under varying system loads.
The Class Incremental Semantic Segmentation (CISS) extends the traditional segmentation task by incrementally learning newly added classes. Previous work has introduced generative replay, which involves replaying old class samples generated from a pre-trained GAN, to address the issues of catastrophic forgetting and privacy concerns. However, the generated images lack semantic precision and exhibit out-of-distribution characteristics, resulting in inaccurate masks that further degrade the segmentation performance. To tackle these challenges, we propose DiffusePast, a novel framework featuring a diffusion-based generative replay module that generates semantically accurate images with more reliable masks guided by different instructions (e.g., text prompts or edge maps). Specifically, DiffusePast introduces a dual-generator paradigm, which focuses on generating old class images that align with the distribution of downstream datasets while preserving the structure and layout of the original images, enabling more precise masks. To adapt to the novel visual concepts of newly added classes continuously, we incorporate class-wise token embedding when updating the dual-generator. Moreover, we assign adequate pseudo-labels of old classes to the background pixels in the new step images, further mitigating the forgetting of previously learned knowledge. Through comprehensive experiments, our method demonstrates competitive performance across mainstream benchmarks, striking a better balance between the performance of old and novel classes.
Headland maneuvering is a crucial aspect of unmanned field operations for autonomous agricultural vehicles (AAVs). While motion planning for headland turning in open fields has been extensively studied and integrated into commercial auto-guidance systems, the existing methods primarily address scenarios with ample headland space and thus may not work in more constrained headland geometries. Commercial orchards often contain narrow and irregularly shaped headlands, which may include static obstacles,rendering the task of planning a smooth and collision-free turning trajectory difficult. To address this challenge, we propose an optimization-based motion planning algorithm for headland turning under geometrical constraints imposed by field geometry and obstacles.
Two-sided platforms rely on their recommendation algorithms to help visitors successfully find a match. However, on platforms such as VolunteerMatch (VM) -- which has facilitated millions of connections between volunteers and nonprofits -- a sizable fraction of website traffic arrives directly to a nonprofit's volunteering page via an external link, thus bypassing the platform's recommendation algorithm. We study how such platforms should account for this external traffic in the design of their recommendation algorithms, given the goal of maximizing successful matches. We model the platform's problem as a special case of online matching, where (using VM terminology) volunteers arrive sequentially and probabilistically match with one opportunity, each of which has finite need for volunteers. In our framework, external traffic is interested only in their targeted opportunity; by contrast, internal traffic may be interested in many opportunities, and the platform's online algorithm selects which opportunity to recommend. In evaluating different algorithms, we parameterize the competitive ratio based on the amount of external traffic. After demonstrating the shortcomings of a commonly-used algorithm that is optimal in the absence of external traffic, we propose a new algorithm -- Adaptive Capacity (AC) -- which accounts for matches differently based on whether they originate from internal or external traffic. We provide a lower bound on AC's competitive ratio that is increasing in the amount of external traffic and that is close to (and, in some regimes, exactly matches) the parameterized upper bound we establish on the competitive ratio of any online algorithm. We complement our theoretical results with a numerical study motivated by VM data that demonstrates the strong performance of AC and furthers our understanding of the difference between AC and other commonly-used algorithms.
Signalized intersections in arterial roads result in persistent vehicle idling and excess accelerations, contributing to fuel consumption and CO2 emissions. There has thus been a line of work studying eco-driving control strategies to reduce fuel consumption and emission levels at intersections. However, methods to devise effective control strategies across a variety of traffic settings remain elusive. In this paper, we propose a reinforcement learning (RL) approach to learn effective eco-driving control strategies. We analyze the potential impact of a learned strategy on fuel consumption, CO2 emission, and travel time and compare with naturalistic driving and model-based baselines. We further demonstrate the generalizability of the learned policies under mixed traffic scenarios. Simulation results indicate that scenarios with 100% penetration of connected autonomous vehicles (CAV) may yield as high as 18% reduction in fuel consumption and 25% reduction in CO2 emission levels while even improving travel speed by 20%. Furthermore, results indicate that even 25% CAV penetration can bring at least 50% of the total fuel and emission reduction benefits.
Pre-trained Language Models (PLMs) have achieved great success in various Natural Language Processing (NLP) tasks under the pre-training and fine-tuning paradigm. With large quantities of parameters, PLMs are computation-intensive and resource-hungry. Hence, model pruning has been introduced to compress large-scale PLMs. However, most prior approaches only consider task-specific knowledge towards downstream tasks, but ignore the essential task-agnostic knowledge during pruning, which may cause catastrophic forgetting problem and lead to poor generalization ability. To maintain both task-agnostic and task-specific knowledge in our pruned model, we propose ContrAstive Pruning (CAP) under the paradigm of pre-training and fine-tuning. It is designed as a general framework, compatible with both structured and unstructured pruning. Unified in contrastive learning, CAP enables the pruned model to learn from the pre-trained model for task-agnostic knowledge, and fine-tuned model for task-specific knowledge. Besides, to better retain the performance of the pruned model, the snapshots (i.e., the intermediate models at each pruning iteration) also serve as effective supervisions for pruning. Our extensive experiments show that adopting CAP consistently yields significant improvements, especially in extremely high sparsity scenarios. With only 3% model parameters reserved (i.e., 97% sparsity), CAP successfully achieves 99.2% and 96.3% of the original BERT performance in QQP and MNLI tasks. In addition, our probing experiments demonstrate that the model pruned by CAP tends to achieve better generalization ability.
Graph Convolutional Network (GCN) has been widely applied in transportation demand prediction due to its excellent ability to capture non-Euclidean spatial dependence among station-level or regional transportation demands. However, in most of the existing research, the graph convolution was implemented on a heuristically generated adjacency matrix, which could neither reflect the real spatial relationships of stations accurately, nor capture the multi-level spatial dependence of demands adaptively. To cope with the above problems, this paper provides a novel graph convolutional network for transportation demand prediction. Firstly, a novel graph convolution architecture is proposed, which has different adjacency matrices in different layers and all the adjacency matrices are self-learned during the training process. Secondly, a layer-wise coupling mechanism is provided, which associates the upper-level adjacency matrix with the lower-level one. It also reduces the scale of parameters in our model. Lastly, a unitary network is constructed to give the final prediction result by integrating the hidden spatial states with gated recurrent unit, which could capture the multi-level spatial dependence and temporal dynamics simultaneously. Experiments have been conducted on two real-world datasets, NYC Citi Bike and NYC Taxi, and the results demonstrate the superiority of our model over the state-of-the-art ones.
Few-shot Knowledge Graph (KG) completion is a focus of current research, where each task aims at querying unseen facts of a relation given its few-shot reference entity pairs. Recent attempts solve this problem by learning static representations of entities and references, ignoring their dynamic properties, i.e., entities may exhibit diverse roles within task relations, and references may make different contributions to queries. This work proposes an adaptive attentional network for few-shot KG completion by learning adaptive entity and reference representations. Specifically, entities are modeled by an adaptive neighbor encoder to discern their task-oriented roles, while references are modeled by an adaptive query-aware aggregator to differentiate their contributions. Through the attention mechanism, both entities and references can capture their fine-grained semantic meanings, and thus render more expressive representations. This will be more predictive for knowledge acquisition in the few-shot scenario. Evaluation in link prediction on two public datasets shows that our approach achieves new state-of-the-art results with different few-shot sizes.