亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Recursive techniques have recently been introduced into quantum programming so that a variety of large quantum circuits and algorithms can be elegantly and economically programmed. In this paper, we present a proof system for formal verification of the correctness of recursively defined quantum circuits. The soundness and (relative) completeness of the proof system are established. To demonstrating its effectiveness, a series of application examples of the proof system are given, including (multi-qubit) controlled gates, a quantum circuit generating (multi-qubit) GHZ (Greenberger-Horne-Zeilinger) states, recursive definition of quantum Fourier transform, quantum state preparation, and quantum random-access memories (QRAM).

相關內容

The development of logic has largely been through the 'deductive' paradigm: conclusions are inferred from established premisses. However, the use of logic in the context of both human and machine reasoning is typically through the dual 'reductive' perspective: collections of sufficient premisses are generated from putative conclusions. We call this paradigm, 'reductive logic'. This expression of logic encompass as diverse reasoning activities as proving a formula in a formal system to seeking to meet a friend before noon on Saturday. This paper is a semantical analysis of reductive logic. In particular, we provide mathematical foundations for representing and reasoning about 'reduction operators'. Heuristically, reduction operators may be thought of as `backwards' inference rules. In this paper, we address their mathematical representation, how they are used in the context of reductive reasoning, and, crucially, what makes them 'valid'.

Recent theoretical results in quantum machine learning have demonstrated a general trade-off between the expressive power of quantum neural networks (QNNs) and their trainability; as a corollary of these results, practical exponential separations in expressive power over classical machine learning models are believed to be infeasible as such QNNs take a time to train that is exponential in the model size. We here circumvent these negative results by constructing a hierarchy of efficiently trainable QNNs that exhibit unconditionally provable, polynomial memory separations of arbitrary constant degree over classical neural networks -- including state-of-the-art models, such as Transformers -- in performing a classical sequence modeling task. This construction is also computationally efficient, as each unit cell of the introduced class of QNNs only has constant gate complexity. We show that contextuality -- informally, a quantitative notion of semantic ambiguity -- is the source of the expressivity separation, suggesting that other learning tasks with this property may be a natural setting for the use of quantum learning algorithms.

Previous research has shown that constraining the gradient of loss function with respect to model-predicted probabilities can enhance the model robustness against noisy labels. These methods typically specify a fixed optimal threshold for gradient clipping through validation data to obtain the desired robustness against noise. However, this common practice overlooks the dynamic distribution of gradients from both clean and noisy-labeled samples at different stages of training, significantly limiting the model capability to adapt to the variable nature of gradients throughout the training process. To address this issue, we propose a simple yet effective approach called Optimized Gradient Clipping (OGC), which dynamically adjusts the clipping threshold based on the ratio of noise gradients to clean gradients after clipping, estimated by modeling the distributions of clean and noisy samples. This approach allows us to modify the clipping threshold at each training step, effectively controlling the influence of noise gradients. Additionally, we provide statistical analysis to certify the noise-tolerance ability of OGC. Our extensive experiments across various types of label noise, including symmetric, asymmetric, instance-dependent, and real-world noise, demonstrate the effectiveness of our approach.

The development of logic has largely been through the 'deductive' paradigm: conclusions are inferred from established premisses. However, the use of logic in the context of both human and machine reasoning is typically through the dual 'reductive' perspective: collections of sufficient premisses are generated from putative conclusions. We call this paradigm, 'reductive logic'. This expression of logic encompass as diverse reasoning activities as proving a formula in a formal system to seeking to meet a friend before noon on Saturday. This paper is a semantical analysis of reductive logic. In particular, we provide mathematical foundations for representing and reasoning about 'reduction operators'. Heuristically, reduction operators may be thought of as `backwards' inference rules. In this paper, we address their mathematical representation, how they are used in the context of reductive reasoning, and, crucially, what makes them 'valid'.

Generative AI is an invaluable tool, however, in some parts of the world, this technology is censored due to political or societal issues. In this work, we monitor Generative AI censorship through the DNS protocol. We find China to be a leading country of Generative AI censorship. Interestingly, China does not censor all AI domain names. We also report censorship in Russia and find inconsistencies in their process. We compare our results to other measurement platforms (OONI, Censored Planet, GFWatch), and present their lack of data on Generative AI domains.

The explosion of data available in life sciences is fueling an increasing demand for expressive models and computational methods. Graph transformation is a model for dynamic systems with a large variety of applications. We introduce a novel method of the graph transformation model construction, combining generative and dynamical viewpoints to give a fully automated data-driven model inference method. The method takes the input dynamical properties, given as a "snapshot" of the dynamics encoded by explicit transitions, and constructs a compatible model. The obtained model is guaranteed to be minimal, thus framing the approach as model compression (from a set of transitions into a set of rules). The compression is permissive to a lossy case, where the constructed model is allowed to exhibit behavior outside of the input transitions, thus suggesting a completion of the input dynamics. The task of graph transformation model inference is naturally highly challenging due to the combinatorics involved. We tackle the exponential explosion by proposing a heuristically minimal translation of the task into a well-established problem, set cover, for which highly optimized solutions exist. We further showcase how our results relate to Kolmogorov complexity expressed in terms of graph transformation.

This work uniquely identifies and characterizes four prevalent multimodal model architectural patterns in the contemporary multimodal landscape. Systematically categorizing models by architecture type facilitates monitoring of developments in the multimodal domain. Distinct from recent survey papers that present general information on multimodal architectures, this research conducts a comprehensive exploration of architectural details and identifies four specific architectural types. The types are distinguished by their respective methodologies for integrating multimodal inputs into the deep neural network model. The first two types (Type A and B) deeply fuses multimodal inputs within the internal layers of the model, whereas the following two types (Type C and D) facilitate early fusion at the input stage. Type-A employs standard cross-attention, whereas Type-B utilizes custom-designed layers for modality fusion within the internal layers. On the other hand, Type-C utilizes modality-specific encoders, while Type-D leverages tokenizers to process the modalities at the model's input stage. The identified architecture types aid the monitoring of any-to-any multimodal model development. Notably, Type-C and Type-D are currently favored in the construction of any-to-any multimodal models. Type-C, distinguished by its non-tokenizing multimodal model architecture, is emerging as a viable alternative to Type-D, which utilizes input-tokenizing techniques. To assist in model selection, this work highlights the advantages and disadvantages of each architecture type based on data and compute requirements, architecture complexity, scalability, simplification of adding modalities, training objectives, and any-to-any multimodal generation capability.

Large Language Models (LLMs) have shown excellent generalization capabilities that have led to the development of numerous models. These models propose various new architectures, tweaking existing architectures with refined training strategies, increasing context length, using high-quality training data, and increasing training time to outperform baselines. Analyzing new developments is crucial for identifying changes that enhance training stability and improve generalization in LLMs. This survey paper comprehensively analyses the LLMs architectures and their categorization, training strategies, training datasets, and performance evaluations and discusses future research directions. Moreover, the paper also discusses the basic building blocks and concepts behind LLMs, followed by a complete overview of LLMs, including their important features and functions. Finally, the paper summarizes significant findings from LLM research and consolidates essential architectural and training strategies for developing advanced LLMs. Given the continuous advancements in LLMs, we intend to regularly update this paper by incorporating new sections and featuring the latest LLM models.

As soon as abstract mathematical computations were adapted to computation on digital computers, the problem of efficient representation, manipulation, and communication of the numerical values in those computations arose. Strongly related to the problem of numerical representation is the problem of quantization: in what manner should a set of continuous real-valued numbers be distributed over a fixed discrete set of numbers to minimize the number of bits required and also to maximize the accuracy of the attendant computations? This perennial problem of quantization is particularly relevant whenever memory and/or computational resources are severely restricted, and it has come to the forefront in recent years due to the remarkable performance of Neural Network models in computer vision, natural language processing, and related areas. Moving from floating-point representations to low-precision fixed integer values represented in four bits or less holds the potential to reduce the memory footprint and latency by a factor of 16x; and, in fact, reductions of 4x to 8x are often realized in practice in these applications. Thus, it is not surprising that quantization has emerged recently as an important and very active sub-area of research in the efficient implementation of computations associated with Neural Networks. In this article, we survey approaches to the problem of quantizing the numerical values in deep Neural Network computations, covering the advantages/disadvantages of current methods. With this survey and its organization, we hope to have presented a useful snapshot of the current research in quantization for Neural Networks and to have given an intelligent organization to ease the evaluation of future research in this area.

Embedding entities and relations into a continuous multi-dimensional vector space have become the dominant method for knowledge graph embedding in representation learning. However, most existing models ignore to represent hierarchical knowledge, such as the similarities and dissimilarities of entities in one domain. We proposed to learn a Domain Representations over existing knowledge graph embedding models, such that entities that have similar attributes are organized into the same domain. Such hierarchical knowledge of domains can give further evidence in link prediction. Experimental results show that domain embeddings give a significant improvement over the most recent state-of-art baseline knowledge graph embedding models.

北京阿比特科技有限公司