The image-based multimodal automatic speech recognition (ASR) model enhances speech recognition performance by incorporating audio-related image. However, some works suggest that introducing image information to model does not help improving ASR performance. In this paper, we propose a novel approach effectively utilizing audio-related image information and set up VHASR, a multimodal speech recognition system that uses vision as hotwords to strengthen the model's speech recognition capability. Our system utilizes a dual-stream architecture, which firstly transcribes the text on the two streams separately, and then combines the outputs. We evaluate the proposed model on four datasets: Flickr8k, ADE20k, COCO, and OpenImages. The experimental results show that VHASR can effectively utilize key information in images to enhance the model's speech recognition ability. Its performance not only surpasses unimodal ASR, but also achieves SOTA among existing image-based multimodal ASR.
Training transformer models requires substantial GPU compute and memory resources. In homogeneous clusters, distributed strategies allocate resources evenly, but this approach is inefficient for heterogeneous clusters, where GPUs differ in power and memory. As high-end GPUs are costly and limited in availability, heterogeneous clusters with diverse GPU types are becoming more common. Existing methods attempt to balance compute across GPUs based on capacity but often underutilize compute due to memory constraints. We present Cephalo, a system that optimizes compute and memory usage by decoupling compute distribution from training state assignment. Cephalo outperforms state-of-the-art methods by achieving significantly higher training throughput while supporting larger models and batch sizes.
The development of learning-based hyperspectral image (HSI) compression models has recently attracted significant interest. Existing models predominantly utilize convolutional filters, which capture only local dependencies. Furthermore,they often incur high training costs and exhibit substantial computational complexity. To address these limitations, in this paper we propose Hyperspectral Compression Transformer (HyCoT) that is a transformer-based autoencoder for pixelwise HSI compression. Additionally, we apply a simple yet effective training set reduction approach to accelerate the training process. Experimental results on the HySpecNet-11k dataset demonstrate that HyCoT surpasses the state of the art across various compression ratios by over 1 dB of PSNR with significantly reduced computational requirements. Our code and pre-trained weights are publicly available at //git.tu-berlin.de/rsim/hycot .
Effective robot navigation in dynamic environments is a challenging task that depends on generating precise control actions at high frequencies. Recent advancements have framed navigation as a goal-conditioned control problem. Current state-of-the-art methods for goal-based navigation, such as diffusion policies, either generate sub-goal images or robot control actions to guide robots. However, despite their high accuracy, these methods incur substantial computational costs, which limits their practicality for real-time applications. Recently, Conditional Flow Matching(CFM) has emerged as a more efficient and robust generalization of diffusion. In this work we explore the use of CFM to learn action policies that help the robot navigate its environment. Our results demonstrate that CFM is able to generate highly accurate robot actions. CFM not only matches the accuracy of diffusion policies but also significantly improves runtime performance. This makes it particularly advantageous for real-time robot navigation, where swift, reliable action generation is vital for collision avoidance and smooth operation. By leveraging CFM, we provide a pathway to more scalable, responsive robot navigation systems capable of handling the demands of dynamic and unpredictable environments.
Event cameras are bio-inspired, motion-activated sensors that demonstrate impressive potential in handling challenging situations, such as motion blur and high-dynamic range. Despite their promise, existing event-based simultaneous localization and mapping (SLAM) approaches exhibit limited performance in real-world applications. On the other hand, state-of-the-art SLAM approaches that incorporate deep neural networks for better robustness and applicability. However, these is a lack of research in fusing learning-based event SLAM methods with IMU, which could be indispensable to push the event-based SLAM to large-scale, low-texture or complex scenarios. In this paper, we propose DEIO, the first monocular deep event-inertial odometry framework that combines learning-based method with traditional nonlinear graph-based optimization. Specifically, we tightly integrate a trainable event-based differentiable bundle adjustment (e-DBA) with the IMU pre-integration in a factor graph which employs keyframe-based sliding window optimization. Numerical Experiments in nine public challenge datasets show that our method can achieve superior performance compared with the image-based and event-based benchmarks. The source code is available at: //github.com/arclab-hku/DEIO.
Error slice discovery associates structured patterns with model errors. Existing methods discover error slices by clustering the error-prone samples with similar patterns or assigning discrete attributes to each sample for post-hoc analysis. While these methods aim for interpretability and easier mitigation through reweighting or rebalancing, they may not capture the full complexity of error patterns due to incomplete or missing attributes. Contrary to the existing approach, this paper utilizes the reasoning capabilities of the Large Language Model (LLM) to analyze complex error patterns and generate testable hypotheses. This paper proposes LADDER: Language Driven slice Discovery and Error Rectification. It first projects the model's representation into a language-aligned feature space (eg CLIP) to preserve semantics in the original model feature space. This ensures the accurate retrieval of sentences that highlight the model's errors. Next, the LLM utilizes the sentences and generates hypotheses to discover error slices. Finally, we mitigate the error by fine-tuning the classification head by creating a group-balanced dataset using the hypotheses. Our entire method does not require any attribute annotation, either explicitly or through external tagging models. We validate our method with \textbf{five} image classification datasets.
Instruction-guided image editing methods have demonstrated significant potential by training diffusion models on automatically synthesized or manually annotated image editing pairs. However, these methods remain far from practical, real-life applications. We identify three primary challenges contributing to this gap. Firstly, existing models have limited editing skills due to the biased synthesis process. Secondly, these methods are trained with datasets with a high volume of noise and artifacts. This is due to the application of simple filtering methods like CLIP-score. Thirdly, all these datasets are restricted to a single low resolution and fixed aspect ratio, limiting the versatility to handle real-world use cases. In this paper, we present \omniedit, which is an omnipotent editor to handle seven different image editing tasks with any aspect ratio seamlessly. Our contribution is in four folds: (1) \omniedit is trained by utilizing the supervision from seven different specialist models to ensure task coverage. (2) we utilize importance sampling based on the scores provided by large multimodal models (like GPT-4o) instead of CLIP-score to improve the data quality. (3) we propose a new editing architecture called EditNet to greatly boost the editing success rate, (4) we provide images with different aspect ratios to ensure that our model can handle any image in the wild. We have curated a test set containing images of different aspect ratios, accompanied by diverse instructions to cover different tasks. Both automatic evaluation and human evaluations demonstrate that \omniedit can significantly outperform all the existing models. Our code, dataset and model will be available at \url{//tiger-ai-lab.github.io/OmniEdit/}
Video question-answering (QA) is a core task in video understanding. Evaluating the quality of video QA and video caption data quality for training video large language models (VideoLLMs) is an essential challenge. Although various methods have been proposed for assessing video caption quality, there remains a lack of dedicated evaluation methods for Video QA. To address this gap, we introduce EVQAScore, a reference-free method that leverages keyword extraction to assess both video caption and video QA data quality. Additionally, we incorporate frame sampling and rescaling techniques to enhance the efficiency and robustness of our evaluation, this enables our score to evaluate the quality of extremely long videos. Our approach achieves state-of-the-art (SOTA) performance (32.8 for Kendall correlation and 42.3 for Spearman correlation, 4.7 and 5.9 higher than the previous method PAC-S++) on the VATEX-EVAL benchmark for video caption evaluation. Furthermore, by using EVQAScore for data selection, we achieved SOTA results with only 12.5\% of the original data volume, outperforming the previous SOTA method PAC-S and 100\% of data.
Existing regression models tend to fall short in both accuracy and uncertainty estimation when the label distribution is imbalanced. In this paper, we propose a probabilistic deep learning model, dubbed variational imbalanced regression (VIR), which not only performs well in imbalanced regression but naturally produces reasonable uncertainty estimation as a byproduct. Different from typical variational autoencoders assuming I.I.D. representations (a data point's representation is not directly affected by other data points), our VIR borrows data with similar regression labels to compute the latent representation's variational distribution; furthermore, different from deterministic regression models producing point estimates, VIR predicts the entire normal-inverse-gamma distributions and modulates the associated conjugate distributions to impose probabilistic reweighting on the imbalanced data, thereby providing better uncertainty estimation. Experiments in several real-world datasets show that our VIR can outperform state-of-the-art imbalanced regression models in terms of both accuracy and uncertainty estimation. Code will soon be available at //github.com/Wang-ML-Lab/variational-imbalanced-regression.
Diffusion models (DMs) have shown great potential for high-quality image synthesis. However, when it comes to producing images with complex scenes, how to properly describe both image global structures and object details remains a challenging task. In this paper, we present Frido, a Feature Pyramid Diffusion model performing a multi-scale coarse-to-fine denoising process for image synthesis. Our model decomposes an input image into scale-dependent vector quantized features, followed by a coarse-to-fine gating for producing image output. During the above multi-scale representation learning stage, additional input conditions like text, scene graph, or image layout can be further exploited. Thus, Frido can be also applied for conditional or cross-modality image synthesis. We conduct extensive experiments over various unconditioned and conditional image generation tasks, ranging from text-to-image synthesis, layout-to-image, scene-graph-to-image, to label-to-image. More specifically, we achieved state-of-the-art FID scores on five benchmarks, namely layout-to-image on COCO and OpenImages, scene-graph-to-image on COCO and Visual Genome, and label-to-image on COCO. Code is available at //github.com/davidhalladay/Frido.
We present CoDEx, a set of knowledge graph completion datasets extracted from Wikidata and Wikipedia that improve upon existing knowledge graph completion benchmarks in scope and level of difficulty. In terms of scope, CoDEx comprises three knowledge graphs varying in size and structure, multilingual descriptions of entities and relations, and tens of thousands of hard negative triples that are plausible but verified to be false. To characterize CoDEx, we contribute thorough empirical analyses and benchmarking experiments. First, we analyze each CoDEx dataset in terms of logical relation patterns. Next, we report baseline link prediction and triple classification results on CoDEx for five extensively tuned embedding models. Finally, we differentiate CoDEx from the popular FB15K-237 knowledge graph completion dataset by showing that CoDEx covers more diverse and interpretable content, and is a more difficult link prediction benchmark. Data, code, and pretrained models are available at //bit.ly/2EPbrJs.