Embodied intelligence empowers agents with a profound sense of perception, enabling them to respond in a manner closely aligned with real-world situations. Large Language Models (LLMs) delve into language instructions with depth, serving a crucial role in generating plans for intricate tasks. Thus, LLM-based embodied models further enhance the agent's capacity to comprehend and process information. However, this amalgamation also ushers in new challenges in the pursuit of heightened intelligence. Specifically, attackers can manipulate LLMs to produce irrelevant or even malicious outputs by altering their prompts. Confronted with this challenge, we observe a notable absence of multi-modal datasets essential for comprehensively evaluating the robustness of LLM-based embodied models. Consequently, we construct the Embodied Intelligent Robot Attack Dataset (EIRAD), tailored specifically for robustness evaluation. Additionally, two attack strategies are devised, including untargeted attacks and targeted attacks, to effectively simulate a range of diverse attack scenarios. At the same time, during the attack process, to more accurately ascertain whether our method is successful in attacking the LLM-based embodied model, we devise a new attack success evaluation method utilizing the BLIP2 model. Recognizing the time and cost-intensive nature of the GCG algorithm in attacks, we devise a scheme for prompt suffix initialization based on various target tasks, thus expediting the convergence process. Experimental results demonstrate that our method exhibits a superior attack success rate when targeting LLM-based embodied models, indicating a lower level of decision-level robustness in these models.
Automated heuristic design (AHD) has gained considerable attention for its potential to automate the development of effective heuristics. The recent advent of large language models (LLMs) has paved a new avenue for AHD, with initial efforts focusing on framing AHD as an evolutionary program search (EPS) problem. However, inconsistent benchmark settings, inadequate baselines, and a lack of detailed component analysis have left the necessity of integrating LLMs with search strategies and the true progress achieved by existing LLM-based EPS methods to be inadequately justified. This work seeks to fulfill these research queries by conducting a large-scale benchmark comprising four LLM-based EPS methods and four AHD problems across nine LLMs and five independent runs. Our extensive experiments yield meaningful insights, providing empirical grounding for the importance of evolutionary search in LLM-based AHD approaches, while also contributing to the advancement of future EPS algorithmic development. To foster accessibility and reproducibility, we have fully open-sourced our benchmark and corresponding results.
Query-focused summarization (QFS) aims to produce summaries that answer particular questions of interest, enabling greater user control and personalization. With the advent of large language models (LLMs), shows their impressive capability of textual understanding through large-scale pretraining, which implies the great potential of extractive snippet generation. In this paper, we systematically investigated two indispensable characteristics that the LLMs-based QFS models should be harnessed, Lengthy Document Summarization and Efficiently Fine-grained Query-LLM Alignment, respectively. Correspondingly, we propose two modules called Query-aware HyperExpert and Query-focused Infini-attention to access the aforementioned characteristics. These innovations pave the way for broader application and accessibility in the field of QFS technology. Extensive experiments conducted on existing QFS benchmarks indicate the effectiveness and generalizability of the proposed approach. Our code is publicly available at //github.com/DCDmllm/IDEAL_Summary.
The emergence of large-scale foundation models (FoMo's) that can perform human-like intelligence motivates their deployment at the network edge for devices to access state-of-the-art artificial intelligence. For better user experiences, the pre-trained FoMo's need to be adapted to specialized downstream tasks through fine-tuning techniques. To transcend a single device's memory and computation limitations, we advocate multi-device cooperation within the device-edge cooperative fine-tuning (DEFT) paradigm, where edge devices cooperate to simultaneously optimize different parts of fine-tuning parameters within a FoMo. However, the parameter blocks reside at different depths within a FoMo architecture, leading to varied computation latency-and-memory cost due to gradient backpropagation-based calculations. The heterogeneous on-device computation and memory capacities and channel conditions necessitate an integrated communication-and-computation allocation of local computation loads and communication resources to achieve low-latency (LoLa) DEFT. To this end, we consider the depth-ware DEFT block allocation problem. The involved optimal block-device matching is tackled by the proposed low-complexity Cutting-RecoUNting-CHecking (CRUNCH) algorithm, which is designed by exploiting the monotone-increasing property between block depth and computation latency-and-memory cost. Next, the joint bandwidth-and-block allocation makes the problem more sophisticated. We observe a splittable Lagrangian expression through the transformation and analysis of the original problem, where the variables indicating device involvement are introduced. Then, the dual ascent method is employed to tackle this problem iteratively. Through extensive experiments conducted on the GLUE benchmark, our results demonstrate significant latency reduction achievable by LoLa DEFT for fine-tuning a RoBERTa model.
In the realm of self-supervised learning (SSL), masked image modeling (MIM) has gained popularity alongside contrastive learning methods. MIM involves reconstructing masked regions of input images using their unmasked portions. A notable subset of MIM methodologies employs discrete tokens as the reconstruction target, but the theoretical underpinnings of this choice remain underexplored. In this paper, we explore the role of these discrete tokens, aiming to unravel their benefits and limitations. Building upon the connection between MIM and contrastive learning, we provide a comprehensive theoretical understanding on how discrete tokenization affects the model's generalization capabilities. Furthermore, we propose a novel metric named TCAS, which is specifically designed to assess the effectiveness of discrete tokens within the MIM framework. Inspired by this metric, we contribute an innovative tokenizer design and propose a corresponding MIM method named ClusterMIM. It demonstrates superior performance on a variety of benchmark datasets and ViT backbones. Code is available at //github.com/PKU-ML/ClusterMIM.
Over the past decade explainable artificial intelligence has evolved from a predominantly technical discipline into a field that is deeply intertwined with social sciences. Insights such as human preference for contrastive -- more precisely, counterfactual -- explanations have played a major role in this transition, inspiring and guiding the research in computer science. Other observations, while equally important, have nevertheless received much less consideration. The desire of human explainees to communicate with artificial intelligence explainers through a dialogue-like interaction has been mostly neglected by the community. This poses many challenges for the effectiveness and widespread adoption of such technologies as delivering a single explanation optimised according to some predefined objectives may fail to engender understanding in its recipients and satisfy their unique needs given the diversity of human knowledge and intention. Using insights elaborated by Niklas Luhmann and, more recently, Elena Esposito we apply social systems theory to highlight challenges in explainable artificial intelligence and offer a path forward, striving to reinvigorate the technical research in the direction of interactive and iterative explainers. Specifically, this paper demonstrates the potential of systems theoretical approaches to communication in elucidating and addressing the problems and limitations of human-centred explainable artificial intelligence.
Motion understanding aims to establish a reliable mapping between motion and action semantics, while it is a challenging many-to-many problem. An abstract action semantic (i.e., walk forwards) could be conveyed by perceptually diverse motions (walking with arms up or swinging). In contrast, a motion could carry different semantics w.r.t. its context and intention. This makes an elegant mapping between them difficult. Previous attempts adopted direct-mapping paradigms with limited reliability. Also, current automatic metrics fail to provide reliable assessments of the consistency between motions and action semantics. We identify the source of these problems as the significant gap between the two modalities. To alleviate this gap, we propose Kinematic Phrases (KP) that take the objective kinematic facts of human motion with proper abstraction, interpretability, and generality. Based on KP, we can unify a motion knowledge base and build a motion understanding system. Meanwhile, KP can be automatically converted from motions to text descriptions with no subjective bias, inspiring Kinematic Prompt Generation (KPG) as a novel white-box motion generation benchmark. In extensive experiments, our approach shows superiority over other methods. Our project is available at //foruck.github.io/KP/.
Chain-of-thought reasoning, a cognitive process fundamental to human intelligence, has garnered significant attention in the realm of artificial intelligence and natural language processing. However, there still remains a lack of a comprehensive survey for this arena. To this end, we take the first step and present a thorough survey of this research field carefully and widely. We use X-of-Thought to refer to Chain-of-Thought in a broad sense. In detail, we systematically organize the current research according to the taxonomies of methods, including XoT construction, XoT structure variants, and enhanced XoT. Additionally, we describe XoT with frontier applications, covering planning, tool use, and distillation. Furthermore, we address challenges and discuss some future directions, including faithfulness, multi-modal, and theory. We hope this survey serves as a valuable resource for researchers seeking to innovate within the domain of chain-of-thought reasoning.
Human intelligence thrives on the concept of cognitive synergy, where collaboration and information integration among different cognitive processes yield superior outcomes compared to individual cognitive processes in isolation. Although Large Language Models (LLMs) have demonstrated promising performance as general task-solving agents, they still struggle with tasks that require intensive domain knowledge and complex reasoning. In this work, we propose Solo Performance Prompting (SPP), which transforms a single LLM into a cognitive synergist by engaging in multi-turn self-collaboration with multiple personas. A cognitive synergist refers to an intelligent agent that collaborates with multiple minds, combining their individual strengths and knowledge, to enhance problem-solving and overall performance in complex tasks. By dynamically identifying and simulating different personas based on task inputs, SPP unleashes the potential of cognitive synergy in LLMs. We have discovered that assigning multiple, fine-grained personas in LLMs elicits better problem-solving abilities compared to using a single or fixed number of personas. We evaluate SPP on three challenging tasks: Trivia Creative Writing, Codenames Collaborative, and Logic Grid Puzzle, encompassing both knowledge-intensive and reasoning-intensive types. Unlike previous works, such as Chain-of-Thought, that solely enhance the reasoning abilities in LLMs, SPP effectively elicits internal knowledge acquisition abilities, reduces hallucination, and maintains strong reasoning capabilities. Code, data, and prompts can be found at: //github.com/MikeWangWZHL/Solo-Performance-Prompting.git.
As artificial intelligence (AI) models continue to scale up, they are becoming more capable and integrated into various forms of decision-making systems. For models involved in moral decision-making, also known as artificial moral agents (AMA), interpretability provides a way to trust and understand the agent's internal reasoning mechanisms for effective use and error correction. In this paper, we provide an overview of this rapidly-evolving sub-field of AI interpretability, introduce the concept of the Minimum Level of Interpretability (MLI) and recommend an MLI for various types of agents, to aid their safe deployment in real-world settings.
In pace with developments in the research field of artificial intelligence, knowledge graphs (KGs) have attracted a surge of interest from both academia and industry. As a representation of semantic relations between entities, KGs have proven to be particularly relevant for natural language processing (NLP), experiencing a rapid spread and wide adoption within recent years. Given the increasing amount of research work in this area, several KG-related approaches have been surveyed in the NLP research community. However, a comprehensive study that categorizes established topics and reviews the maturity of individual research streams remains absent to this day. Contributing to closing this gap, we systematically analyzed 507 papers from the literature on KGs in NLP. Our survey encompasses a multifaceted review of tasks, research types, and contributions. As a result, we present a structured overview of the research landscape, provide a taxonomy of tasks, summarize our findings, and highlight directions for future work.