亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

To scale quantum computers to useful levels, we must build networks of quantum computational nodes that can share entanglement for use in distributed forms of quantum algorithms. In one proposed architecture, node-to-node entanglement is created when nodes emit photons entangled with stationary memories, with the photons routed through a switched interconnect to a shared pool of Bell state analyzers (BSAs). Designs that optimize switching circuits will reduce loss and crosstalk, raising entanglement rates and fidelity. We present optimal designs for switched interconnects constrained to planar layouts, appropriate for silicon waveguides and Mach-Zehnder interferometer (MZI) $2 \times 2$ switch points. The architectures for the optimal designs are scalable and algorithmically structured to pair any arbitrary inputs in a rearrangeable, non-blocking way. For pairing $N$ inputs, $N(N - 2)/4$ switches are required, which is less than half of number of switches required for full permutation switching networks. An efficient routing algorithm is also presented for each architecture. These designs can also be employed in reverse for entanglement generation using a shared pool of entangled paired photon sources.

相關內容

The interest in linear complexity models for large language models is on the rise, although their scaling capacity remains uncertain. In this study, we present the scaling laws for linear complexity language models to establish a foundation for their scalability. Specifically, we examine the scaling behaviors of three efficient linear architectures. These include TNL, a linear attention model with data-independent decay; HGRN2, a linear RNN with data-dependent decay; and cosFormer2, a linear attention model without decay. We also include LLaMA as a baseline architecture for softmax attention for comparison. These models were trained with six variants, ranging from 70M to 7B parameters on a 300B-token corpus, and evaluated with a total of 1,376 intermediate checkpoints on various downstream tasks. These tasks include validation loss, commonsense reasoning, and information retrieval and generation. The study reveals that existing linear complexity language models exhibit similar scaling capabilities as conventional transformer-based models while also demonstrating superior linguistic proficiency and knowledge retention.

Accurate estimation of queuing delays is crucial for designing and optimizing communication networks, particularly in the context of Deterministic Networking (DetNet) scenarios. This study investigates the approximation of Internet queuing delays using an M/M/1 envelope model, which provides a simple methodology to find tight upper bounds of real delay percentiles. Real traffic statistics collected at large Internet Exchange Points (like Amsterdam and San Francisco) have been used to fit polynomial regression models for transforming packet queuing delays into the M/M/1 envelope models. We finally propose a methodology for providing delay percentiles in DetNet scenarios where tight latency guarantees need to be assured.

Recent advances in reinforcement learning (RL) heavily rely on a variety of well-designed benchmarks, which provide environmental platforms and consistent criteria to evaluate existing and novel algorithms. Specifically, in multi-agent RL (MARL), a plethora of benchmarks based on cooperative games have spurred the development of algorithms that improve the scalability of cooperative multi-agent systems. However, for the competitive setting, a lightweight and open-sourced benchmark with challenging gaming dynamics and visual inputs has not yet been established. In this work, we present FightLadder, a real-time fighting game platform, to empower competitive MARL research. Along with the platform, we provide implementations of state-of-the-art MARL algorithms for competitive games, as well as a set of evaluation metrics to characterize the performance and exploitability of agents. We demonstrate the feasibility of this platform by training a general agent that consistently defeats 12 built-in characters in single-player mode, and expose the difficulty of training a non-exploitable agent without human knowledge and demonstrations in two-player mode. FightLadder provides meticulously designed environments to address critical challenges in competitive MARL research, aiming to catalyze a new era of discovery and advancement in the field. Videos and code at //sites.google.com/view/fightladder/home.

Quantum entanglement is so fundamentally different from a network packet that several quantum network stacks have been proposed; one of which has even been experimentally demonstrated. Several simulators have also been developed to make up for limited hardware availability, and which facilitate the design and evaluation of quantum network protocols. However, the lack of shared tooling and community-agreed node architectures has resulted in protocol implementations that are tightly coupled to their simulators. Besides limiting their reusability between different simulators, it also makes building upon prior results and simulations difficult. To address this problem, we have developed QuIP: a P4-based Quantum Internet Protocol prototyping framework for quantum network protocol design. QuIP is a framework for designing and implementing quantum network protocols in a platform-agnostic fashion. It achieves this by providing the means to flexibly, but rigorously, define device architectures against which quantum network protocols can be implemented in the network programming language P4$_{16}$. QuIP also comes with the necessary tooling to enable their execution in existing quantum network simulators. We demonstrate its use by showcasing V1Quantum, a completely new device architecture, implementing a link- and network-layer protocol, and simulating it in the existing simulator NetSquid.

Inspired by recent progress in dynamic programming approaches for weighted model counting, we investigate a dynamic-programming approach in the context of boolean realizability and synthesis, which takes a conjunctive-normal-form boolean formula over input and output variables, and aims at synthesizing witness functions for the output variables in terms of the inputs. We show how graded project-join trees, obtained via tree decomposition, can be used to compute a BDD representing the realizability set for the input formulas in a bottom-up order. We then show how the intermediate BDDs generated during realizability checking phase can be applied to synthesizing the witness functions in a top-down manner. An experimental evaluation of a solver -- DPSynth -- based on these ideas demonstrates that our approach for Boolean realizabilty and synthesis has superior time and space performance over a heuristics-based approach using same symbolic representations. We discuss the advantage on scalability of the new approach, and also investigate our findings on the performance of the DP framework.

Sequential recommender systems aims to predict the users' next interaction through user behavior modeling with various operators like RNNs and attentions. However, existing models generally fail to achieve the three golden principles for sequential recommendation simultaneously, i.e., training efficiency, low-cost inference, and strong performance. To this end, we propose RecBLR, an Efficient Sequential Recommendation Model based on Behavior-Dependent Linear Recurrent Units to accomplish the impossible triangle of the three principles. By incorporating gating mechanisms and behavior-dependent designs into linear recurrent units, our model significantly enhances user behavior modeling and recommendation performance. Furthermore, we unlock the parallelizable training as well as inference efficiency for our model by designing a hardware-aware scanning acceleration algorithm with a customized CUDA kernel. Extensive experiments on real-world datasets with varying lengths of user behavior sequences demonstrate RecBLR's remarkable effectiveness in simultaneously achieving all three golden principles - strong recommendation performance, training efficiency, and low-cost inference, while exhibiting excellent scalability to datasets with long user interaction histories.

In this paper, we propose a novel joint deep reinforcement learning (DRL)-based solution to optimize the utility of an uncrewed aerial vehicle (UAV)-assisted communication network. To maximize the number of users served within the constraints of the UAV's limited bandwidth and power resources, we employ deep Q-Networks (DQN) and deep deterministic policy gradient (DDPG) algorithms for optimal resource allocation to ground users with heterogeneous data rate demands. The DQN algorithm dynamically allocates multiple bandwidth resource blocks to different users based on current demand and available resource states. Simultaneously, the DDPG algorithm manages power allocation, continuously adjusting power levels to adapt to varying distances and fading conditions, including Rayleigh fading for non-line-of-sight (NLoS) links and Rician fading for line-of-sight (LoS) links. Our joint DRL-based solution demonstrates an increase of up to 41% in the number of users served compared to scenarios with equal bandwidth and power allocation.

Approaches based on deep neural networks have achieved striking performance when testing data and training data share similar distribution, but can significantly fail otherwise. Therefore, eliminating the impact of distribution shifts between training and testing data is crucial for building performance-promising deep models. Conventional methods assume either the known heterogeneity of training data (e.g. domain labels) or the approximately equal capacities of different domains. In this paper, we consider a more challenging case where neither of the above assumptions holds. We propose to address this problem by removing the dependencies between features via learning weights for training samples, which helps deep models get rid of spurious correlations and, in turn, concentrate more on the true connection between discriminative features and labels. Extensive experiments clearly demonstrate the effectiveness of our method on multiple distribution generalization benchmarks compared with state-of-the-art counterparts. Through extensive experiments on distribution generalization benchmarks including PACS, VLCS, MNIST-M, and NICO, we show the effectiveness of our method compared with state-of-the-art counterparts.

Learning latent representations of nodes in graphs is an important and ubiquitous task with widespread applications such as link prediction, node classification, and graph visualization. Previous methods on graph representation learning mainly focus on static graphs, however, many real-world graphs are dynamic and evolve over time. In this paper, we present Dynamic Self-Attention Network (DySAT), a novel neural architecture that operates on dynamic graphs and learns node representations that capture both structural properties and temporal evolutionary patterns. Specifically, DySAT computes node representations by jointly employing self-attention layers along two dimensions: structural neighborhood and temporal dynamics. We conduct link prediction experiments on two classes of graphs: communication networks and bipartite rating networks. Our experimental results show that DySAT has a significant performance gain over several different state-of-the-art graph embedding baselines.

Object detection is considered as one of the most challenging problems in computer vision, since it requires correct prediction of both classes and locations of objects in images. In this study, we define a more difficult scenario, namely zero-shot object detection (ZSD) where no visual training data is available for some of the target object classes. We present a novel approach to tackle this ZSD problem, where a convex combination of embeddings are used in conjunction with a detection framework. For evaluation of ZSD methods, we propose a simple dataset constructed from Fashion-MNIST images and also a custom zero-shot split for the Pascal VOC detection challenge. The experimental results suggest that our method yields promising results for ZSD.

北京阿比特科技有限公司