In many fault-detection problems, its objective lies in discerning all the defective items from a set of $n$ items with a binary characteristic by utilizing the minimum number of tests. Group testing (i.e., testing a subset of items with a single test) plays a pivotal role in classifying a large population of items. We study a central problem in the combinatorial group testing model for the situation where the number $d$ of defectives is unknown in advance. Let $M(d,n)=\min_{\alpha}M_\alpha(d|n)$, where $M_\alpha(d|n)$ is the maximum number of tests required by an algorithm $\alpha$ for the problem. An algorithm $\alpha$ is called a $c$\emph{-competitive algorithm} if there exist constants $c$ and $a$ such that for $0\le d < n$, $M_{\alpha}(d|n)\le cM(d,n)+a$. We design a new adaptive algorithm with competitive constant $c \le 1.431$, thus pushing the competitive ratio below the best-known one of $1.452$. The new algorithm is a novel solution framework based on a strongly competitive algorithm and an up-zig-zag strategy that has not yet been investigated.
Propositional model counting (#SAT) can be solved efficiently when the input formula is in deterministic decomposable negation normal form (d-DNNF). Translating an arbitrary formula into a representation that allows inference tasks, such as counting, to be performed efficiently, is called knowledge compilation. Top-down knowledge compilation is a state-of-the-art technique for solving #SAT problems that leverages the traces of exhaustive DPLL search to obtain d-DNNF representations. While knowledge compilation is well studied for propositional approaches, knowledge compilation for the (quantifier free) counting modulo theory setting (#SMT) has been studied to a much lesser degree. In this paper, we discuss compilation strategies for #SMT. We specifically advocate for a top-down compiler based on the traces of exhaustive DPLL(T) search.
Semantic part segmentation provides an intricate and interpretable understanding of an object, thereby benefiting numerous downstream tasks. However, the need for exhaustive annotations impedes its usage across diverse object types. This paper focuses on learning part segmentation from synthetic animals, leveraging the Skinned Multi-Animal Linear (SMAL) models to scale up existing synthetic data generated by computer-aided design (CAD) animal models. Compared to CAD models, SMAL models generate data with a wider range of poses observed in real-world scenarios. As a result, our first contribution is to construct a synthetic animal dataset of tigers and horses with more pose diversity, termed Synthetic Animal Parts (SAP). We then benchmark Syn-to-Real animal part segmentation from SAP to PartImageNet, namely SynRealPart, with existing semantic segmentation domain adaptation methods and further improve them as our second contribution. Concretely, we examine three Syn-to-Real adaptation methods but observe relative performance drop due to the innate difference between the two tasks. To address this, we propose a simple yet effective method called Class-Balanced Fourier Data Mixing (CB-FDM). Fourier Data Mixing aligns the spectral amplitudes of synthetic images with real images, thereby making the mixed images have more similar frequency content to real images. We further use Class-Balanced Pseudo-Label Re-Weighting to alleviate the imbalanced class distribution. We demonstrate the efficacy of CB-FDM on SynRealPart over previous methods with significant performance improvements. Remarkably, our third contribution is to reveal that the learned parts from synthetic tiger and horse are transferable across all quadrupeds in PartImageNet, further underscoring the utility and potential applications of animal part segmentation.
Despite the success of Siamese encoder models such as sentence transformers (ST), little is known about the aspects of inputs they pay attention to. A barrier is that their predictions cannot be attributed to individual features, as they compare two inputs rather than processing a single one. This paper derives a local attribution method for Siamese encoders by generalizing the principle of integrated gradients to models with multiple inputs. The solution takes the form of feature-pair attributions, and can be reduced to a token-token matrix for STs. Our method involves the introduction of integrated Jacobians and inherits the advantageous formal properties of integrated gradients: it accounts for the model's full computation graph and is guaranteed to converge to the actual prediction. A pilot study shows that in an ST few token-pairs can often explain large fractions of predictions, and it focuses on nouns and verbs. For accurate predictions, it however needs to attend to the majority of tokens and parts of speech.
Correspondence analysis is a dimension reduction method for visualization of nonnegative data sets, in particular contingency tables ; but it depends on the marginals of the data set. Two transformations of the data have been proposed to render correspondence analysis row and column scales invariant : These two kinds of transformations change the initial form of the data set into a bistochastic form. The power transorfmation applied by Greenacre (2010) has one positive parameter. While the transormation applied by Mosteller (1968) and Goodman (1996) has (I+J) positive parameters, where the raw data is row and column scaled by the Sinkhorn (RAS or ipf) algorithm to render it bistochastic. Goodman (1996) named correspondence analsis of a bistochastic matrix marginal-free correspondence analysis. We discuss these two transformations, and further generalize Mosteller-Goodman approach.
Constraint programming (CP) is a powerful tool for modeling mathematical concepts and objects and finding both solutions or counter examples. One of the major strengths of CP is that problems can easily be combined or expanded. In this paper, we illustrate that this versatility makes CP an ideal tool for exploring problems in permutation patterns. We declaratively define permutation properties, permutation pattern avoidance and containment constraints using CP and show how this allows us to solve a wide range of problems. We show how this approach enables the arbitrary composition of these conditions, and also allows the easy addition of extra conditions. We demonstrate the effectiveness of our techniques by modelling the containment and avoidance of six permutation patterns, eight permutation properties and measuring five statistics on the resulting permutations. In addition to calculating properties and statistics for the generated permutations, we show that arbitrary additional constraints can also be easily and efficiently added. This approach enables mathematicians to investigate permutation pattern problems in a quick and efficient manner. We demonstrate the utility of constraint programming for permutation patterns by showing how we can easily and efficiently extend the known permutation counts for a conjecture involving the class of 1324 avoiding permutations. For this problem, we expand the enumeration of 1324-avoiding permutations with a fixed number of inversions to permutations of length 16 and show for the first time that in the enumeration there is a pattern occurring which follows a unique sequence on the Online Encyclopedia of Integer Sequences.
The Constant Degree Hypothesis was introduced by Barrington et. al. (1990) to study some extensions of $q$-groups by nilpotent groups and the power of these groups in a certain computational model. In its simplest formulation, it establishes exponential lower bounds for $\mathrm{AND}_d \circ \mathrm{MOD}_m \circ \mathrm{MOD}_q$ circuits computing AND of unbounded arity $n$ (for constant integers $d,m$ and a prime $q$). While it has been proved in some special cases (including $d=1$), it remains wide open in its general form for over 30 years. In this paper we prove that the hypothesis holds when we restrict our attention to symmetric circuits with $m$ being a prime. While we build upon techniques by Grolmusz and Tardos (2000), we have to prove a new symmetric version of their Degree Decreasing Lemma and apply it in a highly non-trivial way. Moreover, to establish the result we perform a careful analysis of automorphism groups of $\mathrm{AND} \circ \mathrm{MOD}_m$ subcircuits and study the periodic behaviour of the computed functions. Finally, our methods also yield lower bounds when $d$ is treated as a function of $n$.
The chronological order of user-item interactions can reveal time-evolving and sequential user behaviors in many recommender systems. The items that users will interact with may depend on the items accessed in the past. However, the substantial increase of users and items makes sequential recommender systems still face non-trivial challenges: (1) the hardness of modeling the short-term user interests; (2) the difficulty of capturing the long-term user interests; (3) the effective modeling of item co-occurrence patterns. To tackle these challenges, we propose a memory augmented graph neural network (MA-GNN) to capture both the long- and short-term user interests. Specifically, we apply a graph neural network to model the item contextual information within a short-term period and utilize a shared memory network to capture the long-range dependencies between items. In addition to the modeling of user interests, we employ a bilinear function to capture the co-occurrence patterns of related items. We extensively evaluate our model on five real-world datasets, comparing with several state-of-the-art methods and using a variety of performance metrics. The experimental results demonstrate the effectiveness of our model for the task of Top-K sequential recommendation.
Benefit from the quick development of deep learning techniques, salient object detection has achieved remarkable progresses recently. However, there still exists following two major challenges that hinder its application in embedded devices, low resolution output and heavy model weight. To this end, this paper presents an accurate yet compact deep network for efficient salient object detection. More specifically, given a coarse saliency prediction in the deepest layer, we first employ residual learning to learn side-output residual features for saliency refinement, which can be achieved with very limited convolutional parameters while keep accuracy. Secondly, we further propose reverse attention to guide such side-output residual learning in a top-down manner. By erasing the current predicted salient regions from side-output features, the network can eventually explore the missing object parts and details which results in high resolution and accuracy. Experiments on six benchmark datasets demonstrate that the proposed approach compares favorably against state-of-the-art methods, and with advantages in terms of simplicity, efficiency (45 FPS) and model size (81 MB).
It is always well believed that modeling relationships between objects would be helpful for representing and eventually describing an image. Nevertheless, there has not been evidence in support of the idea on image description generation. In this paper, we introduce a new design to explore the connections between objects for image captioning under the umbrella of attention-based encoder-decoder framework. Specifically, we present Graph Convolutional Networks plus Long Short-Term Memory (dubbed as GCN-LSTM) architecture that novelly integrates both semantic and spatial object relationships into image encoder. Technically, we build graphs over the detected objects in an image based on their spatial and semantic connections. The representations of each region proposed on objects are then refined by leveraging graph structure through GCN. With the learnt region-level features, our GCN-LSTM capitalizes on LSTM-based captioning framework with attention mechanism for sentence generation. Extensive experiments are conducted on COCO image captioning dataset, and superior results are reported when comparing to state-of-the-art approaches. More remarkably, GCN-LSTM increases CIDEr-D performance from 120.1% to 128.7% on COCO testing set.
Traditional methods for link prediction can be categorized into three main types: graph structure feature-based, latent feature-based, and explicit feature-based. Graph structure feature methods leverage some handcrafted node proximity scores, e.g., common neighbors, to estimate the likelihood of links. Latent feature methods rely on factorizing networks' matrix representations to learn an embedding for each node. Explicit feature methods train a machine learning model on two nodes' explicit attributes. Each of the three types of methods has its unique merits. In this paper, we propose SEAL (learning from Subgraphs, Embeddings, and Attributes for Link prediction), a new framework for link prediction which combines the power of all the three types into a single graph neural network (GNN). GNN is a new type of neural network which directly accepts graphs as input and outputs their labels. In SEAL, the input to the GNN is a local subgraph around each target link. We prove theoretically that our local subgraphs also reserve a great deal of high-order graph structure features related to link existence. Another key feature is that our GNN can naturally incorporate latent features and explicit features. It is achieved by concatenating node embeddings (latent features) and node attributes (explicit features) in the node information matrix for each subgraph, thus combining the three types of features to enhance GNN learning. Through extensive experiments, SEAL shows unprecedentedly strong performance against a wide range of baseline methods, including various link prediction heuristics and network embedding methods.