Selecting the best regularization parameter in inverse problems is a classical and yet challenging problem. Recently, data-driven approaches have become popular to tackle this challenge. These approaches are appealing since they do require less a priori knowledge, but their theoretical analysis is limited. In this paper, we propose and study a statistical machine learning approach, based on empirical risk minimization. Our main contribution is a theoretical analysis, showing that, provided with enough data, this approach can reach sharp rates while being essentially adaptive to the noise and smoothness of the problem. Numerical simulations corroborate and illustrate the theoretical findings. Our results are a step towards grounding theoretically data-driven approaches to inverse problems.
We consider the problem of performing Bayesian inference for logistic regression using appropriate extensions of the ensemble Kalman filter. Two interacting particle systems are proposed that sample from an approximate posterior and prove quantitative convergence rates of these interacting particle systems to their mean-field limit as the number of particles tends to infinity. Furthermore, we apply these techniques and examine their effectiveness as methods of Bayesian approximation for quantifying predictive uncertainty in neural networks.
Neurosymbolic background knowledge and the expressivity required of its logic can break Machine Learning assumptions about data Independence and Identical Distribution. In this position paper we propose to analyze IID relaxation in a hierarchy of logics that fit different use case requirements. We discuss the benefits of exploiting known data dependencies and distribution constraints for Neurosymbolic use cases and argue that the expressivity required for this knowledge has implications for the design of underlying ML routines. This opens a new research agenda with general questions about Neurosymbolic background knowledge and the expressivity required of its logic.
Foundation models have become prominent in computer vision, achieving notable success in various tasks. However, their effectiveness largely depends on pre-training with extensive datasets. Applying foundation models directly to small datasets of capsule endoscopy images from scratch is challenging. Pre-training on broad, general vision datasets is crucial for successfully fine-tuning our model for specific tasks. In this work, we introduce a simplified approach called Adapt foundation models with a low-rank adaptation (LoRA) technique for easier customization. Our method, inspired by the DINOv2 foundation model, applies low-rank adaptation learning to tailor foundation models for capsule endoscopy diagnosis effectively. Unlike traditional fine-tuning methods, our strategy includes LoRA layers designed to absorb specific surgical domain knowledge. During the training process, we keep the main model (the backbone encoder) fixed and focus on optimizing the LoRA layers and the disease classification component. We tested our method on two publicly available datasets for capsule endoscopy disease classification. The results were impressive, with our model achieving 97.75% accuracy on the Kvasir-Capsule dataset and 98.81% on the Kvasirv2 dataset. Our solution demonstrates that foundation models can be adeptly adapted for capsule endoscopy diagnosis, highlighting that mere reliance on straightforward fine-tuning or pre-trained models from general computer vision tasks is inadequate for such specific applications.
Weighted Timed Games (WTG for short) are the most widely used model to describe controller synthesis problems involving real-time issues. The synthesized strategies rely on a perfect measure of time elapse, which is not realistic in practice. In order to produce strategies tolerant to timing imprecisions, we rely on a notion of robustness first introduced for timed automata. More precisely, WTGs are two-player zero-sum games played in a timed automaton equipped with integer weights in which one of the players, that we call Min, wants to reach a target location while minimising the cumulated weight. In this work, we equip the underlying timed automaton with a semantics depending on some parameter (representing the maximal possible perturbation) in which the opponent of Min can in addition perturb delays chosen by Min. The robust value problem can then be stated as follows: given some threshold, determine whether there exists a positive perturbation and a strategy for Min ensuring to reach the target, with an accumulated weight below the threshold, whatever the opponent does. We provide the first decidability result for this robust value problem by computing the robust value function, in a parametric way, for the class of divergent WTGs (introduced to obtain decidability of the (classical) value problem in WTGs without bounding the number of clocks). To this end, we show that the robust value is the fixpoint of some operators, as is classically done for value iteration algorithms. We then combine in a very careful way two representations: piecewise affine functions introduced in [1] to analyse WTGs, and shrunk Difference Bound Matrices considered in [29] to analyse robustness in timed automata. Last, we also study qualitative decision problems and close an open problem on robust reachability, showing it is EXPTIME-complete for general WTGs.
Estimating the density of a distribution from samples is a fundamental problem in statistics. In many practical settings, the Wasserstein distance is an appropriate error metric for density estimation. For example, when estimating population densities in a geographic region, a small Wasserstein distance means that the estimate is able to capture roughly where the population mass is. In this work we study differentially private density estimation in the Wasserstein distance. We design and analyze instance-optimal algorithms for this problem that can adapt to easy instances. For distributions $P$ over $\mathbb{R}$, we consider a strong notion of instance-optimality: an algorithm that uniformly achieves the instance-optimal estimation rate is competitive with an algorithm that is told that the distribution is either $P$ or $Q_P$ for some distribution $Q_P$ whose probability density function (pdf) is within a factor of 2 of the pdf of $P$. For distributions over $\mathbb{R}^2$, we use a different notion of instance optimality. We say that an algorithm is instance-optimal if it is competitive with an algorithm that is given a constant-factor multiplicative approximation of the density of the distribution. We characterize the instance-optimal estimation rates in both these settings and show that they are uniformly achievable (up to polylogarithmic factors). Our approach for $\mathbb{R}^2$ extends to arbitrary metric spaces as it goes via hierarchically separated trees. As a special case our results lead to instance-optimal private learning in TV distance for discrete distributions.
Methods of causal discovery aim to identify causal structures in a data driven way. Existing algorithms are known to be unstable and sensitive to statistical errors, and are therefore rarely used with biomedical or epidemiological data. We present an algorithm that efficiently exploits temporal structure, so-called tiered background knowledge, for estimating causal structures. Tiered background knowledge is readily available from, e.g., cohort or registry data. When used efficiently it renders the algorithm more robust to statistical errors and ultimately increases accuracy in finite samples. We describe the algorithm and illustrate how it proceeds. Moreover, we offer formal proofs as well as examples of desirable properties of the algorithm, which we demonstrate empirically in an extensive simulation study. To illustrate its usefulness in practice, we apply the algorithm to data from a children's cohort study investigating the interplay of diet, physical activity and other lifestyle factors for health outcomes.
We prove impossibility results for adaptivity in non-smooth stochastic convex optimization. Given a set of problem parameters we wish to adapt to, we define a "price of adaptivity" (PoA) that, roughly speaking, measures the multiplicative increase in suboptimality due to uncertainty in these parameters. When the initial distance to the optimum is unknown but a gradient norm bound is known, we show that the PoA is at least logarithmic for expected suboptimality, and double-logarithmic for median suboptimality. When there is uncertainty in both distance and gradient norm, we show that the PoA must be polynomial in the level of uncertainty. Our lower bounds nearly match existing upper bounds, and establish that there is no parameter-free lunch. En route, we also establish tight upper and lower bounds for (known-parameter) high-probability stochastic convex optimization with heavy-tailed and bounded noise, respectively.
The generalization mystery in deep learning is the following: Why do over-parameterized neural networks trained with gradient descent (GD) generalize well on real datasets even though they are capable of fitting random datasets of comparable size? Furthermore, from among all solutions that fit the training data, how does GD find one that generalizes well (when such a well-generalizing solution exists)? We argue that the answer to both questions lies in the interaction of the gradients of different examples during training. Intuitively, if the per-example gradients are well-aligned, that is, if they are coherent, then one may expect GD to be (algorithmically) stable, and hence generalize well. We formalize this argument with an easy to compute and interpretable metric for coherence, and show that the metric takes on very different values on real and random datasets for several common vision networks. The theory also explains a number of other phenomena in deep learning, such as why some examples are reliably learned earlier than others, why early stopping works, and why it is possible to learn from noisy labels. Moreover, since the theory provides a causal explanation of how GD finds a well-generalizing solution when one exists, it motivates a class of simple modifications to GD that attenuate memorization and improve generalization. Generalization in deep learning is an extremely broad phenomenon, and therefore, it requires an equally general explanation. We conclude with a survey of alternative lines of attack on this problem, and argue that the proposed approach is the most viable one on this basis.
As soon as abstract mathematical computations were adapted to computation on digital computers, the problem of efficient representation, manipulation, and communication of the numerical values in those computations arose. Strongly related to the problem of numerical representation is the problem of quantization: in what manner should a set of continuous real-valued numbers be distributed over a fixed discrete set of numbers to minimize the number of bits required and also to maximize the accuracy of the attendant computations? This perennial problem of quantization is particularly relevant whenever memory and/or computational resources are severely restricted, and it has come to the forefront in recent years due to the remarkable performance of Neural Network models in computer vision, natural language processing, and related areas. Moving from floating-point representations to low-precision fixed integer values represented in four bits or less holds the potential to reduce the memory footprint and latency by a factor of 16x; and, in fact, reductions of 4x to 8x are often realized in practice in these applications. Thus, it is not surprising that quantization has emerged recently as an important and very active sub-area of research in the efficient implementation of computations associated with Neural Networks. In this article, we survey approaches to the problem of quantizing the numerical values in deep Neural Network computations, covering the advantages/disadvantages of current methods. With this survey and its organization, we hope to have presented a useful snapshot of the current research in quantization for Neural Networks and to have given an intelligent organization to ease the evaluation of future research in this area.
While it is nearly effortless for humans to quickly assess the perceptual similarity between two images, the underlying processes are thought to be quite complex. Despite this, the most widely used perceptual metrics today, such as PSNR and SSIM, are simple, shallow functions, and fail to account for many nuances of human perception. Recently, the deep learning community has found that features of the VGG network trained on the ImageNet classification task has been remarkably useful as a training loss for image synthesis. But how perceptual are these so-called "perceptual losses"? What elements are critical for their success? To answer these questions, we introduce a new Full Reference Image Quality Assessment (FR-IQA) dataset of perceptual human judgments, orders of magnitude larger than previous datasets. We systematically evaluate deep features across different architectures and tasks and compare them with classic metrics. We find that deep features outperform all previous metrics by huge margins. More surprisingly, this result is not restricted to ImageNet-trained VGG features, but holds across different deep architectures and levels of supervision (supervised, self-supervised, or even unsupervised). Our results suggest that perceptual similarity is an emergent property shared across deep visual representations.