We adapt recent tools developed for the analysis of Stochastic Gradient Descent (SGD) in non-convex optimization to obtain convergence and sample complexity guarantees for the vanilla policy gradient (PG). Our only assumptions are that the expected return is smooth w.r.t. the policy parameters, that its $H$-step truncated gradient is close to the exact gradient, and a certain ABC assumption. This assumption requires the second moment of the estimated gradient to be bounded by $A\geq 0$ times the suboptimality gap, $B \geq 0$ times the norm of the full batch gradient and an additive constant $C \geq 0$, or any combination of aforementioned. We show that the ABC assumption is more general than the commonly used assumptions on the policy space to prove convergence to a stationary point. We provide a single convergence theorem that recovers the $\widetilde{\mathcal{O}}(\epsilon^{-4})$ sample complexity of PG to a stationary point. Our results also affords greater flexibility in the choice of hyper parameters such as the step size and the batch size $m$, including the single trajectory case (i.e., $m=1$). When an additional relaxed weak gradient domination assumption is available, we establish a novel global optimum convergence theory of PG with $\widetilde{\mathcal{O}}(\epsilon^{-3})$ sample complexity. We then instantiate our theorems in different settings, where we both recover existing results and obtain improved sample complexity, e.g., $\widetilde{\mathcal{O}}(\epsilon^{-3})$ sample complexity for the convergence to the global optimum for Fisher-non-degenerated parametrized policies.
We consider the sample complexity of learning with adversarial robustness. Most prior theoretical results for this problem have considered a setting where different classes in the data are close together or overlapping. Motivated by some real applications, we consider, in contrast, the well-separated case where there exists a classifier with perfect accuracy and robustness, and show that the sample complexity narrates an entirely different story. Specifically, for linear classifiers, we show a large class of well-separated distributions where the expected robust loss of any algorithm is at least $\Omega(\frac{d}{n})$, whereas the max margin algorithm has expected standard loss $O(\frac{1}{n})$. This shows a gap in the standard and robust losses that cannot be obtained via prior techniques. Additionally, we present an algorithm that, given an instance where the robustness radius is much smaller than the gap between the classes, gives a solution with expected robust loss is $O(\frac{1}{n})$. This shows that for very well-separated data, convergence rates of $O(\frac{1}{n})$ are achievable, which is not the case otherwise. Our results apply to robustness measured in any $\ell_p$ norm with $p > 1$ (including $p = \infty$).
We introduce the bivariate unit-log-symmetric model based on the bivariate log-symmetric distribution (BLS) defined in [Vila et al., 2022, Bivariate Log-symmetric Models: Theoretical Properties and Parameter Estimation. Avaliable at arXiv:2211.13839] as a flexible family of bivariate distributions over the unit square. We then study its mathematical properties such as stochastic representations, quantiles, conditional distributions, independence of the marginal distributions and moments. Maximum likelihood estimation method is discussed and examined through Monte Carlo simulation. Finally, the proposed model is used to analyze soccer data.
In this work, we consider the problem of minimizing the sum of Moreau envelopes of given functions, which has previously appeared in the context of meta-learning and personalized federated learning. In contrast to the existing theory that requires running subsolvers until a certain precision is reached, we only assume that a finite number of gradient steps is taken at each iteration. As a special case, our theory allows us to show the convergence of First-Order Model-Agnostic Meta-Learning (FO-MAML) to the vicinity of a solution of Moreau objective. We also study a more general family of first-order algorithms that can be viewed as a generalization of FO-MAML. Our main theoretical achievement is a theoretical improvement upon the inexact SGD framework. In particular, our perturbed-iterate analysis allows for tighter guarantees that improve the dependency on the problem's conditioning. In contrast to the related work on meta-learning, ours does not require any assumptions on the Hessian smoothness, and can leverage smoothness and convexity of the reformulation based on Moreau envelopes. Furthermore, to fill the gaps in the comparison of FO-MAML to the Implicit MAML (iMAML), we show that the objective of iMAML is neither smooth nor convex, implying that it has no convergence guarantees based on the existing theory.
We study the effect of baselines in on-policy stochastic policy gradient optimization, and close the gap between the theory and practice of policy optimization methods. Our first contribution is to show that the \emph{state value} baseline allows on-policy stochastic \emph{natural} policy gradient (NPG) to converge to a globally optimal policy at an $O(1/t)$ rate, which was not previously known. The analysis relies on two novel findings: the expected progress of the NPG update satisfies a stochastic version of the non-uniform \L{}ojasiewicz (N\L{}) inequality, and with probability 1 the state value baseline prevents the optimal action's probability from vanishing, thus ensuring sufficient exploration. Importantly, these results provide a new understanding of the role of baselines in stochastic policy gradient: by showing that the variance of natural policy gradient estimates remains unbounded with or without a baseline, we find that variance reduction \emph{cannot} explain their utility in this setting. Instead, the analysis reveals that the primary effect of the value baseline is to \textbf{reduce the aggressiveness of the updates} rather than their variance. That is, we demonstrate that a finite variance is \emph{not necessary} for almost sure convergence of stochastic NPG, while controlling update aggressiveness is both necessary and sufficient. Additional experimental results verify these theoretical findings.
A deep neural network using rectified linear units represents a continuous piecewise linear (CPWL) function and vice versa. Recent results in the literature estimated that the number of neurons needed to exactly represent any CPWL function grows exponentially with the number of pieces or exponentially in terms of the factorial of the number of distinct linear components. Moreover, such growth is amplified linearly with the input dimension. These existing results seem to indicate that the cost of representing a CPWL function is expensive. In this paper, we propose much tighter bounds and establish a polynomial time algorithm to find a network satisfying these bounds for any given CPWL function. We prove that the number of hidden neurons required to exactly represent any CPWL function is at most a quadratic function of the number of pieces. In contrast to all previous results, this upper bound is invariant to the input dimension. Besides the number of pieces, we also study the number of distinct linear components in CPWL functions. When such a number is also given, we prove that the quadratic complexity turns into bilinear, which implies a lower neural complexity because the number of distinct linear components is always not greater than the minimum number of pieces in a CPWL function. When the number of pieces is unknown, we prove that, in terms of the number of distinct linear components, the neural complexities of any CPWL function are at most polynomial growth for low-dimensional inputs and factorial growth for the worst-case scenario, which are significantly better than existing results in the literature.
We consider the problem of linearizing a pseudo-Boolean function $f : \{0,1\}^n \to \mathbb{R}$ by means of $k$ Boolean functions. Such a linearization yields an integer linear programming formulation with only $k$ auxiliary variables. This motivates the definition of the linarization complexity of $f$ as the minimum such $k$. Our theoretical contributions are the proof that random polynomials almost surely have a high linearization complexity and characterizations of its value in case we do or do not restrict the set of admissible Boolean functions. The practical relevance is shown by devising and evaluating integer linear programming models of two such linearizations for the low auto-correlation binary sequences problem. Still, many problems around this new concept remain open.
In this paper, we revisit the class of iterative shrinkage-thresholding algorithms (ISTA) for solving the linear inverse problem with sparse representation, which arises in signal and image processing. It is shown in the numerical experiment to deblur an image that the convergence behavior in the logarithmic-scale ordinate tends to be linear instead of logarithmic, approximating to be flat. Making meticulous observations, we find that the previous assumption for the smooth part to be convex weakens the least-square model. Specifically, assuming the smooth part to be strongly convex is more reasonable for the least-square model, even though the image matrix is probably ill-conditioned. Furthermore, we improve the pivotal inequality tighter for composite optimization with the smooth part to be strongly convex instead of general convex, which is first found in [Li et al., 2022]. Based on this pivotal inequality, we generalize the linear convergence to composite optimization in both the objective value and the squared proximal subgradient norm. Meanwhile, we set a simple ill-conditioned matrix which is easy to compute the singular values instead of the original blur matrix. The new numerical experiment shows the proximal generalization of Nesterov's accelerated gradient descent (NAG) for the strongly convex function has a faster linear convergence rate than ISTA. Based on the tighter pivotal inequality, we also generalize the faster linear convergence rate to composite optimization, in both the objective value and the squared proximal subgradient norm, by taking advantage of the well-constructed Lyapunov function with a slight modification and the phase-space representation based on the high-resolution differential equation framework from the implicit-velocity scheme.
This paper aims to provide practitioners of causal mediation analysis with a better understanding of estimation options. We take as inputs two familiar strategies (weighting and model-based prediction) and a simple way of combining them (weighted models), and show how a range of estimators can be generated, with different modeling requirements and robustness properties. The primary goal is to help build intuitive appreciation for robust estimation that is conducive to sound practice. A second goal is to provide a "menu" of estimators that practitioners can choose from for the estimation of marginal natural (in)direct effects. The estimators generated from this exercise include some that coincide or are similar to existing estimators and others that have not previously appeared in the literature. We note several different ways to estimate the weights for cross-world weighting based on three expressions of the weighting function, including one that is novel; and show how to check the resulting covariate and mediator balance. We use a random continuous weights bootstrap to obtain confidence intervals, and also derive general asymptotic variance formulas for the estimators. The estimators are illustrated using data from an adolescent alcohol use prevention study.
Model complexity is a fundamental problem in deep learning. In this paper we conduct a systematic overview of the latest studies on model complexity in deep learning. Model complexity of deep learning can be categorized into expressive capacity and effective model complexity. We review the existing studies on those two categories along four important factors, including model framework, model size, optimization process and data complexity. We also discuss the applications of deep learning model complexity including understanding model generalization capability, model optimization, and model selection and design. We conclude by proposing several interesting future directions.
With the rapid increase of large-scale, real-world datasets, it becomes critical to address the problem of long-tailed data distribution (i.e., a few classes account for most of the data, while most classes are under-represented). Existing solutions typically adopt class re-balancing strategies such as re-sampling and re-weighting based on the number of observations for each class. In this work, we argue that as the number of samples increases, the additional benefit of a newly added data point will diminish. We introduce a novel theoretical framework to measure data overlap by associating with each sample a small neighboring region rather than a single point. The effective number of samples is defined as the volume of samples and can be calculated by a simple formula $(1-\beta^{n})/(1-\beta)$, where $n$ is the number of samples and $\beta \in [0,1)$ is a hyperparameter. We design a re-weighting scheme that uses the effective number of samples for each class to re-balance the loss, thereby yielding a class-balanced loss. Comprehensive experiments are conducted on artificially induced long-tailed CIFAR datasets and large-scale datasets including ImageNet and iNaturalist. Our results show that when trained with the proposed class-balanced loss, the network is able to achieve significant performance gains on long-tailed datasets.