Molecular dynamics (MD) has long been the \emph{de facto} choice for modeling complex atomistic systems from first principles, and recently deep learning become a popular way to accelerate it. Notwithstanding, preceding approaches depend on intermediate variables such as the potential energy or force fields to update atomic positions, which requires additional computations to perform back-propagation. To waive this requirement, we propose a novel model called ScoreMD by directly estimating the gradient of the log density of molecular conformations. Moreover, we analyze that diffusion processes highly accord with the principle of enhanced sampling in MD simulations, and is therefore a perfect match to our sequential conformation generation task. That is, ScoreMD perturbs the molecular structure with a conditional noise depending on atomic accelerations and employs conformations at previous timeframes as the prior distribution for sampling. Another challenge of modeling such a conformation generation process is that the molecule is kinetic instead of static, which no prior studies strictly consider. To solve this challenge, we introduce a equivariant geometric Transformer as a score function in the diffusion process to calculate the corresponding gradient. It incorporates the directions and velocities of atomic motions via 3D spherical Fourier-Bessel representations. With multiple architectural improvements, we outperforms state-of-the-art baselines on MD17 and isomers of C7O2H10. This research provides new insights into the acceleration of new material and drug discovery.
Deep image prior (DIP) was recently introduced as an effective unsupervised approach for image restoration tasks. DIP represents the image to be recovered as the output of a deep convolutional neural network, and learns the network's parameters such that the output matches the corrupted observation. Despite its impressive reconstructive properties, the approach is slow when compared to supervisedly learned, or traditional reconstruction techniques. To address the computational challenge, we bestow DIP with a two-stage learning paradigm: (i) perform a supervised pretraining of the network on a simulated dataset; (ii) fine-tune the network's parameters to adapt to the target reconstruction task. We provide a thorough empirical analysis to shed insights into the impacts of pretraining in the context of image reconstruction. We showcase that pretraining considerably speeds up and stabilizes the subsequent reconstruction task from real-measured 2D and 3D micro computed tomography data of biological specimens. The code and additional experimental materials are available at //educateddip.github.io/docs.educated_deep_image_prior/.
We study the problem of estimating the left and right singular subspaces for a collection of heterogeneous random graphs with a shared common structure. We analyze an algorithm that first estimates the orthogonal projection matrices corresponding to these subspaces for each individual graph, then computes the average of the projection matrices, and finally finds the matrices whose columns are the eigenvectors corresponding to the $d$ largest eigenvalues of the sample averages. We show that the algorithm yields an estimate of the left and right singular vectors whose row-wise fluctuations are normally distributed around the rows of the true singular vectors. We then consider a two-sample hypothesis test for the null hypothesis that two graphs have the same edge probabilities matrices against the alternative hypothesis that their edge probabilities matrices are different. Using the limiting distributions for the singular subspaces, we present a test statistic whose limiting distribution converges to a central $\chi^2$ (resp. non-central $\chi^2$) under the null (resp. alternative) hypothesis. Finally, we adapt the theoretical analysis for multiple networks to the setting of distributed PCA; in particular, we derive normal approximations for the rows of the estimated eigenvectors using distributed PCA when the data exhibit a spiked covariance matrix structure.
Distribution comparison plays a central role in many machine learning tasks like data classification and generative modeling. In this study, we propose a novel metric, called Hilbert curve projection (HCP) distance, to measure the distance between two probability distributions with high robustness and low complexity. In particular, we first project two high-dimensional probability densities using Hilbert curve to obtain a coupling between them, and then calculate the transport distance between these two densities in the original space, according to the coupling. We show that HCP distance is a proper metric and is well-defined for absolutely continuous probability measures. Furthermore, we demonstrate that the empirical HCP distance converges to its population counterpart at a rate of no more than $O(n^{-1/2d})$ under regularity conditions. To suppress the curse-of-dimensionality, we also develop two variants of the HCP distance using (learnable) subspace projections. Experiments on both synthetic and real-world data show that our HCP distance works as an effective surrogate of the Wasserstein distance with low complexity and overcomes the drawbacks of the sliced Wasserstein distance.
Knowledge graphs are inherently incomplete. Therefore substantial research has been directed towards knowledge graph completion (KGC), i.e., predicting missing triples from the information represented in the knowledge graph (KG). Embedding models have yielded promising results for KGC, yet any current KGC embedding model is incapable of: (1) fully capturing vital inference patterns (e.g., composition), (2) capturing prominent logical rules jointly (e.g., hierarchy and composition), and (3) providing an intuitive interpretation of captured patterns. In this work, we propose ExpressivE, a fully expressive spatio-functional embedding model that solves all these challenges simultaneously. ExpressivE embeds pairs of entities as points and relations as hyper-parallelograms in the virtual triple space $\mathbb{R}^{2d}$. This model design allows ExpressivE not only to capture a rich set of inference patterns jointly but additionally to display any supported inference pattern through the spatial relation of hyper-parallelograms, offering an intuitive and consistent geometric interpretation of ExpressivE embeddings and their captured patterns. Experimental results on standard KGC benchmarks reveal that ExpressivE is competitive with state-of-the-art models and even significantly outperforms them on WN18RR.
Depth and ego-motion estimations are essential for the localization and navigation of autonomous robots and autonomous driving. Recent studies make it possible to learn the per-pixel depth and ego-motion from the unlabeled monocular video. A novel unsupervised training framework is proposed with 3D hierarchical refinement and augmentation using explicit 3D geometry. In this framework, the depth and pose estimations are hierarchically and mutually coupled to refine the estimated pose layer by layer. The intermediate view image is proposed and synthesized by warping the pixels in an image with the estimated depth and coarse pose. Then, the residual pose transformation can be estimated from the new view image and the image of the adjacent frame to refine the coarse pose. The iterative refinement is implemented in a differentiable manner in this paper, making the whole framework optimized uniformly. Meanwhile, a new image augmentation method is proposed for the pose estimation by synthesizing a new view image, which creatively augments the pose in 3D space but gets a new augmented 2D image. The experiments on KITTI demonstrate that our depth estimation achieves state-of-the-art performance and even surpasses recent approaches that utilize other auxiliary tasks. Our visual odometry outperforms all recent unsupervised monocular learning-based methods and achieves competitive performance to the geometry-based method, ORB-SLAM2 with back-end optimization.
The adaptive processing of structured data is a long-standing research topic in machine learning that investigates how to automatically learn a mapping from a structured input to outputs of various nature. Recently, there has been an increasing interest in the adaptive processing of graphs, which led to the development of different neural network-based methodologies. In this thesis, we take a different route and develop a Bayesian Deep Learning framework for graph learning. The dissertation begins with a review of the principles over which most of the methods in the field are built, followed by a study on graph classification reproducibility issues. We then proceed to bridge the basic ideas of deep learning for graphs with the Bayesian world, by building our deep architectures in an incremental fashion. This framework allows us to consider graphs with discrete and continuous edge features, producing unsupervised embeddings rich enough to reach the state of the art on several classification tasks. Our approach is also amenable to a Bayesian nonparametric extension that automatizes the choice of almost all model's hyper-parameters. Two real-world applications demonstrate the efficacy of deep learning for graphs. The first concerns the prediction of information-theoretic quantities for molecular simulations with supervised neural models. After that, we exploit our Bayesian models to solve a malware-classification task while being robust to intra-procedural code obfuscation techniques. We conclude the dissertation with an attempt to blend the best of the neural and Bayesian worlds together. The resulting hybrid model is able to predict multimodal distributions conditioned on input graphs, with the consequent ability to model stochasticity and uncertainty better than most works. Overall, we aim to provide a Bayesian perspective into the articulated research field of deep learning for graphs.
Recently many efforts have been devoted to applying graph neural networks (GNNs) to molecular property prediction which is a fundamental task for computational drug and material discovery. One of major obstacles to hinder the successful prediction of molecule property by GNNs is the scarcity of labeled data. Though graph contrastive learning (GCL) methods have achieved extraordinary performance with insufficient labeled data, most focused on designing data augmentation schemes for general graphs. However, the fundamental property of a molecule could be altered with the augmentation method (like random perturbation) on molecular graphs. Whereas, the critical geometric information of molecules remains rarely explored under the current GNN and GCL architectures. To this end, we propose a novel graph contrastive learning method utilizing the geometry of the molecule across 2D and 3D views, which is named GeomGCL. Specifically, we first devise a dual-view geometric message passing network (GeomMPNN) to adaptively leverage the rich information of both 2D and 3D graphs of a molecule. The incorporation of geometric properties at different levels can greatly facilitate the molecular representation learning. Then a novel geometric graph contrastive scheme is designed to make both geometric views collaboratively supervise each other to improve the generalization ability of GeomMPNN. We evaluate GeomGCL on various downstream property prediction tasks via a finetune process. Experimental results on seven real-life molecular datasets demonstrate the effectiveness of our proposed GeomGCL against state-of-the-art baselines.
Geometric deep learning (GDL), which is based on neural network architectures that incorporate and process symmetry information, has emerged as a recent paradigm in artificial intelligence. GDL bears particular promise in molecular modeling applications, in which various molecular representations with different symmetry properties and levels of abstraction exist. This review provides a structured and harmonized overview of molecular GDL, highlighting its applications in drug discovery, chemical synthesis prediction, and quantum chemistry. Emphasis is placed on the relevance of the learned molecular features and their complementarity to well-established molecular descriptors. This review provides an overview of current challenges and opportunities, and presents a forecast of the future of GDL for molecular sciences.
The last decade has witnessed an experimental revolution in data science and machine learning, epitomised by deep learning methods. Indeed, many high-dimensional learning tasks previously thought to be beyond reach -- such as computer vision, playing Go, or protein folding -- are in fact feasible with appropriate computational scale. Remarkably, the essence of deep learning is built from two simple algorithmic principles: first, the notion of representation or feature learning, whereby adapted, often hierarchical, features capture the appropriate notion of regularity for each task, and second, learning by local gradient-descent type methods, typically implemented as backpropagation. While learning generic functions in high dimensions is a cursed estimation problem, most tasks of interest are not generic, and come with essential pre-defined regularities arising from the underlying low-dimensionality and structure of the physical world. This text is concerned with exposing these regularities through unified geometric principles that can be applied throughout a wide spectrum of applications. Such a 'geometric unification' endeavour, in the spirit of Felix Klein's Erlangen Program, serves a dual purpose: on one hand, it provides a common mathematical framework to study the most successful neural network architectures, such as CNNs, RNNs, GNNs, and Transformers. On the other hand, it gives a constructive procedure to incorporate prior physical knowledge into neural architectures and provide principled way to build future architectures yet to be invented.
We present self-supervised geometric perception (SGP), the first general framework to learn a feature descriptor for correspondence matching without any ground-truth geometric model labels (e.g., camera poses, rigid transformations). Our first contribution is to formulate geometric perception as an optimization problem that jointly optimizes the feature descriptor and the geometric models given a large corpus of visual measurements (e.g., images, point clouds). Under this optimization formulation, we show that two important streams of research in vision, namely robust model fitting and deep feature learning, correspond to optimizing one block of the unknown variables while fixing the other block. This analysis naturally leads to our second contribution -- the SGP algorithm that performs alternating minimization to solve the joint optimization. SGP iteratively executes two meta-algorithms: a teacher that performs robust model fitting given learned features to generate geometric pseudo-labels, and a student that performs deep feature learning under noisy supervision of the pseudo-labels. As a third contribution, we apply SGP to two perception problems on large-scale real datasets, namely relative camera pose estimation on MegaDepth and point cloud registration on 3DMatch. We demonstrate that SGP achieves state-of-the-art performance that is on-par or superior to the supervised oracles trained using ground-truth labels.