亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

A celebrated result of Hastad established that, for any constant $\varepsilon>0$, it is NP-hard to find an assignment satisfying a $(1/|G|+\varepsilon)$-fraction of the constraints of a given 3-LIN instance over an Abelian group $G$ even if one is promised that an assignment satisfying a $(1-\varepsilon)$-fraction of the constraints exists. Engebretsen, Holmerin, and Russell showed the same result for 3-LIN instances over any finite (not necessarily Abelian) group. In other words, for almost-satisfiable instances of 3-LIN the random assignment achieves an optimal approximation guarantee. We prove that the random assignment algorithm is still best possible under a stronger promise that the 3-LIN instance is almost satisfiable over an arbitrarily more restrictive group.

相關內容

Group一直是研究計算機支持的合作工作、人機交互、計算機支持的協作學習和社會技術研究的主要場所。該會議將社會科學、計算機科學、工程、設計、價值觀以及其他與小組工作相關的多個不同主題的工作結合起來,并進行了廣泛的概念化。官網鏈接: · TOOLS · Performer · 查全率/召回率 · 查準率/準確率 ·
2024 年 12 月 15 日

With the increased popularity of Deep Neural Networks (DNNs), increases also the need for tools to assist developers in the DNN implementation, testing and debugging process. Several approaches have been proposed that automatically analyse and localise potential faults in DNNs under test. In this work, we evaluate and compare existing state-of-the-art fault localisation techniques, which operate based on both dynamic and static analysis of the DNN. The evaluation is performed on a benchmark consisting of both real faults obtained from bug reporting platforms and faulty models produced by a mutation tool. Our findings indicate that the usage of a single, specific ground truth (e.g., the human defined one) for the evaluation of DNN fault localisation tools results in pretty low performance (maximum average recall of 0.31 and precision of 0.23). However, such figures increase when considering alternative, equivalent patches that exist for a given faulty DNN. Results indicate that \dfd is the most effective tool, achieving an average recall of 0.61 and precision of 0.41 on our benchmark.

Is there a fixed dimension $n$ such that translational tiling of $\mathbb{Z}^n$ with a monotile is undecidable? Several recent results support a positive answer to this question. Greenfeld and Tao disprove the periodic tiling conjecture by showing that an aperiodic monotile exists in sufficiently high dimension $n$ [Ann. Math. 200(2024), 301-363]. In another paper [to appear in J. Eur. Math. Soc.], they also show that if the dimension $n$ is part of the input, then the translational tiling for subsets of $\mathbb{Z}^n$ with one tile is undecidable. These two results are very strong pieces of evidence for the conjecture that translational tiling of $\mathbb{Z}^n$ with a monotile is undecidable, for some fixed $n$. This paper gives another supportive result for this conjecture by showing that translational tiling of the $4$-dimensional space with a set of three connected tiles is undecidable.

With the rapid development of artificial intelligence, robotics, and Internet of Things, multi-robot systems are progressively acquiring human-like environmental perception and understanding capabilities, empowering them to complete complex tasks through autonomous decision-making and interaction. However, the Internet of Robotic Things (IoRT) faces significant challenges in terms of spectrum resources, sensing accuracy, communication latency, and energy supply. To address these issues, a reconfigurable intelligent surface (RIS)-aided IoRT network is proposed to enhance the overall performance of robotic communication, sensing, computation, and energy harvesting. In the case studies, by jointly optimizing parameters such as transceiver beamforming, robot trajectories, and RIS coefficients, solutions based on multi-agent deep reinforcement learning and multi-objective optimization are proposed to solve problems such as beamforming design, path planning, target sensing, and data aggregation. Numerical results are provided to demonstrate the effectiveness of proposed solutions in improve communication quality, sensing accuracy, computation error, and energy efficiency of RIS-aided IoRT networks.

We introduce a new erasure decoder that applies to arbitrary quantum LDPC codes. Dubbed the cluster decoder, it generalizes the decomposition idea of Vertical-Horizontal (VH) decoding introduced by Connelly et al. in 2022. Like the VH decoder, the idea is to first run the peeling decoder and then post-process the resulting stopping set. The cluster decoder breaks the stopping set into a tree of clusters which can be solved sequentially via Gaussian Elimination (GE). By allowing clusters of unconstrained size, this decoder achieves maximum-likelihood (ML) performance with reduced complexity compared with full GE. When GE is applied only to clusters whose sizes are less than a constant, the performance is degraded but the complexity becomes linear in the block length. Our simulation results show that, for hypergraph product codes, the cluster decoder with constant cluster size achieves near-ML performance similar to VH decoding in the low-erasure-rate regime. For the general quantum LDPC codes we studied, the cluster decoder can be used to estimate the ML performance curve with reduced complexity over a wide range of erasure rates.

A multichannel extension to the RVQGAN neural coding method is proposed, and realized for data-driven compression of third-order Ambisonics audio. The input- and output layers of the generator and discriminator models are modified to accept multiple (16) channels without increasing the model bitrate. We also propose a loss function for accounting for spatial perception in immersive reproduction, and transfer learning from single-channel models. Listening test results with 7.1.4 immersive playback show that the proposed extension is suitable for coding scene-based, 16-channel Ambisonics content with good quality at 16 kbps when trained and tested on the EigenScape database. The model has potential applications for learning other types of content and multichannel formats.

Reasoning, a crucial ability for complex problem-solving, plays a pivotal role in various real-world settings such as negotiation, medical diagnosis, and criminal investigation. It serves as a fundamental methodology in the field of Artificial General Intelligence (AGI). With the ongoing development of foundation models, e.g., Large Language Models (LLMs), there is a growing interest in exploring their abilities in reasoning tasks. In this paper, we introduce seminal foundation models proposed or adaptable for reasoning, highlighting the latest advancements in various reasoning tasks, methods, and benchmarks. We then delve into the potential future directions behind the emergence of reasoning abilities within foundation models. We also discuss the relevance of multimodal learning, autonomous agents, and super alignment in the context of reasoning. By discussing these future research directions, we hope to inspire researchers in their exploration of this field, stimulate further advancements in reasoning with foundation models, and contribute to the development of AGI.

As soon as abstract mathematical computations were adapted to computation on digital computers, the problem of efficient representation, manipulation, and communication of the numerical values in those computations arose. Strongly related to the problem of numerical representation is the problem of quantization: in what manner should a set of continuous real-valued numbers be distributed over a fixed discrete set of numbers to minimize the number of bits required and also to maximize the accuracy of the attendant computations? This perennial problem of quantization is particularly relevant whenever memory and/or computational resources are severely restricted, and it has come to the forefront in recent years due to the remarkable performance of Neural Network models in computer vision, natural language processing, and related areas. Moving from floating-point representations to low-precision fixed integer values represented in four bits or less holds the potential to reduce the memory footprint and latency by a factor of 16x; and, in fact, reductions of 4x to 8x are often realized in practice in these applications. Thus, it is not surprising that quantization has emerged recently as an important and very active sub-area of research in the efficient implementation of computations associated with Neural Networks. In this article, we survey approaches to the problem of quantizing the numerical values in deep Neural Network computations, covering the advantages/disadvantages of current methods. With this survey and its organization, we hope to have presented a useful snapshot of the current research in quantization for Neural Networks and to have given an intelligent organization to ease the evaluation of future research in this area.

Residual networks (ResNets) have displayed impressive results in pattern recognition and, recently, have garnered considerable theoretical interest due to a perceived link with neural ordinary differential equations (neural ODEs). This link relies on the convergence of network weights to a smooth function as the number of layers increases. We investigate the properties of weights trained by stochastic gradient descent and their scaling with network depth through detailed numerical experiments. We observe the existence of scaling regimes markedly different from those assumed in neural ODE literature. Depending on certain features of the network architecture, such as the smoothness of the activation function, one may obtain an alternative ODE limit, a stochastic differential equation or neither of these. These findings cast doubts on the validity of the neural ODE model as an adequate asymptotic description of deep ResNets and point to an alternative class of differential equations as a better description of the deep network limit.

Neural machine translation (NMT) is a deep learning based approach for machine translation, which yields the state-of-the-art translation performance in scenarios where large-scale parallel corpora are available. Although the high-quality and domain-specific translation is crucial in the real world, domain-specific corpora are usually scarce or nonexistent, and thus vanilla NMT performs poorly in such scenarios. Domain adaptation that leverages both out-of-domain parallel corpora as well as monolingual corpora for in-domain translation, is very important for domain-specific translation. In this paper, we give a comprehensive survey of the state-of-the-art domain adaptation techniques for NMT.

While it is nearly effortless for humans to quickly assess the perceptual similarity between two images, the underlying processes are thought to be quite complex. Despite this, the most widely used perceptual metrics today, such as PSNR and SSIM, are simple, shallow functions, and fail to account for many nuances of human perception. Recently, the deep learning community has found that features of the VGG network trained on the ImageNet classification task has been remarkably useful as a training loss for image synthesis. But how perceptual are these so-called "perceptual losses"? What elements are critical for their success? To answer these questions, we introduce a new Full Reference Image Quality Assessment (FR-IQA) dataset of perceptual human judgments, orders of magnitude larger than previous datasets. We systematically evaluate deep features across different architectures and tasks and compare them with classic metrics. We find that deep features outperform all previous metrics by huge margins. More surprisingly, this result is not restricted to ImageNet-trained VGG features, but holds across different deep architectures and levels of supervision (supervised, self-supervised, or even unsupervised). Our results suggest that perceptual similarity is an emergent property shared across deep visual representations.

北京阿比特科技有限公司