A variety of Neural Radiance Fields (NeRF) methods have recently achieved remarkable success in high render speed. However, current accelerating methods are specialized and incompatible with various implicit methods, preventing real-time composition over various types of NeRF works. Because NeRF relies on sampling along rays, it is possible to provide general guidance for acceleration. To that end, we propose a general implicit pipeline for composing NeRF objects quickly. Our method enables the casting of dynamic shadows within or between objects using analytical light sources while allowing multiple NeRF objects to be seamlessly placed and rendered together with any arbitrary rigid transformations. Mainly, our work introduces a new surface representation known as Neural Depth Fields (NeDF) that quickly determines the spatial relationship between objects by allowing direct intersection computation between rays and implicit surfaces. It leverages an intersection neural network to query NeRF for acceleration instead of depending on an explicit spatial structure.Our proposed method is the first to enable both the progressive and interactive composition of NeRF objects. Additionally, it also serves as a previewing plugin for a range of existing NeRF works.
Recently, many versatile Multi-modal Large Language Models (MLLMs) have emerged continuously. However, their capacity to query information depicted in visual charts and engage in reasoning based on the queried contents remains under-explored. In this paper, to comprehensively and rigorously benchmark the ability of the off-the-shelf MLLMs in the chart domain, we construct ChartX, a multi-modal evaluation set covering 18 chart types, 7 chart tasks, 22 disciplinary topics, and high-quality chart data. Besides, we develop ChartVLM to offer a new perspective on handling multi-modal tasks that strongly depend on interpretable patterns, such as reasoning tasks in the field of charts or geometric images. We evaluate the chart-related ability of mainstream MLLMs and our ChartVLM on the proposed ChartX evaluation set. Extensive experiments demonstrate that ChartVLM surpasses both versatile and chart-related large models, achieving results comparable to GPT-4V. We believe that our study can pave the way for further exploration in creating a more comprehensive chart evaluation set and developing more interpretable multi-modal models. Both ChartX and ChartVLM are available at: //github.com/UniModal4Reasoning/ChartVLM
Contextualized embeddings are the preferred tool for modeling Lexical Semantic Change (LSC). Current evaluations typically focus on a specific task known as Graded Change Detection (GCD). However, performance comparison across work are often misleading due to their reliance on diverse settings. In this paper, we evaluate state-of-the-art models and approaches for GCD under equal conditions. We further break the LSC problem into Word-in-Context (WiC) and Word Sense Induction (WSI) tasks, and compare models across these different levels. Our evaluation is performed across different languages on eight available benchmarks for LSC, and shows that (i) APD outperforms other approaches for GCD; (ii) XL-LEXEME outperforms other contextualized models for WiC, WSI, and GCD, while being comparable to GPT-4; (iii) there is a clear need for improving the modeling of word meanings, as well as focus on how, when, and why these meanings change, rather than solely focusing on the extent of semantic change.
In this article we consider Bayesian parameter inference for a type of partially observed stochastic Volterra equation (SVE). SVEs are found in many areas such as physics and mathematical finance. In the latter field they can be used to represent long memory in unobserved volatility processes. In many cases of practical interest, SVEs must be time-discretized and then parameter inference is based upon the posterior associated to this time-discretized process. Based upon recent studies on time-discretization of SVEs (e.g. Richard et al. 2021), we use Euler-Maruyama methods for the afore-mentioned discretization. We then show how multilevel Markov chain Monte Carlo (MCMC) methods (Jasra et al. 2018) can be applied in this context. In the examples we study, we give a proof that shows that the cost to achieve a mean square error (MSE) of $\mathcal{O}(\epsilon^2)$, $\epsilon>0$, is {$\mathcal{O}(\epsilon^{-\tfrac{4}{2H+1}})$, where $H$ is the Hurst parameter. If one uses a single level MCMC method then the cost is $\mathcal{O}(\epsilon^{-\tfrac{2(2H+3)}{2H+1}})$} to achieve the same MSE. We illustrate these results in the context of state-space and stochastic volatility models, with the latter applied to real data.
Foundation models have shown superior performance for speech emotion recognition (SER). However, given the limited data in emotion corpora, finetuning all parameters of large pre-trained models for SER can be both resource-intensive and susceptible to overfitting. This paper investigates parameter-efficient finetuning (PEFT) for SER. Various PEFT adaptors are systematically studied for both classification of discrete emotion categories and prediction of dimensional emotional attributes. The results demonstrate that the combination of PEFT methods surpasses full finetuning with a significant reduction in the number of trainable parameters. Furthermore, a two-stage adaptation strategy is proposed to adapt models trained on acted emotion data, which is more readily available, to make the model more adept at capturing natural emotional expressions. Both intra- and cross-corpus experiments validate the efficacy of the proposed approach in enhancing the performance on both the source and target domains.
ChatGPT has piqued the interest of many fields, particularly in the academic community. GPT-4, the latest version, starts supporting multimodal input and output. This study examines social media posts to analyze how the Chinese public perceives the potential of ChatGPT for educational and general purposes. The study also serves as the first effort to investigate the changes in public opinion since the release of GPT-4. According to the analysis results, prior to GPT-4, although some social media users believed that AI advancements would benefit education and society, some believed that advanced AI, such as ChatGPT, would make humans feel inferior and lead to problems such as cheating and a decline in moral principles, while the majority remain neutral. Interestingly, public attitudes have tended to shift in a positive direction since the release of GPT-4. We present a thorough analysis of the trending shift and a roadmap to ensure the ethical application of ChatGPT-like models in education and beyond.
The adoption of Artificial Intelligence (AI) based Virtual Network Functions (VNFs) has witnessed significant growth, posing a critical challenge in orchestrating AI models within next-generation 6G networks. Finding optimal AI model placement is significantly more challenging than placing traditional software-based VNFs, due to the introduction of numerous uncertain factors by AI models, such as varying computing resource consumption, dynamic storage requirements, and changing model performance. To address the AI model placement problem under uncertainties, this paper presents a novel approach employing a sequence-to-sequence (S2S) neural network which considers uncertainty estimations. The S2S model, characterized by its encoding-decoding architecture, is designed to take the service chain with a number of AI models as input and produce the corresponding placement of each AI model. To address the introduced uncertainties, our methodology incorporates the orthonormal certificate module for uncertainty estimation and utilizes fuzzy logic for uncertainty representation, thereby enhancing the capabilities of the S2S model. Experiments demonstrate that the proposed method achieves competitive results across diverse AI model profiles, network environments, and service chain requests.
Existing knowledge graph (KG) embedding models have primarily focused on static KGs. However, real-world KGs do not remain static, but rather evolve and grow in tandem with the development of KG applications. Consequently, new facts and previously unseen entities and relations continually emerge, necessitating an embedding model that can quickly learn and transfer new knowledge through growth. Motivated by this, we delve into an expanding field of KG embedding in this paper, i.e., lifelong KG embedding. We consider knowledge transfer and retention of the learning on growing snapshots of a KG without having to learn embeddings from scratch. The proposed model includes a masked KG autoencoder for embedding learning and update, with an embedding transfer strategy to inject the learned knowledge into the new entity and relation embeddings, and an embedding regularization method to avoid catastrophic forgetting. To investigate the impacts of different aspects of KG growth, we construct four datasets to evaluate the performance of lifelong KG embedding. Experimental results show that the proposed model outperforms the state-of-the-art inductive and lifelong embedding baselines.
Graph Convolutional Networks (GCNs) have been widely applied in various fields due to their significant power on processing graph-structured data. Typical GCN and its variants work under a homophily assumption (i.e., nodes with same class are prone to connect to each other), while ignoring the heterophily which exists in many real-world networks (i.e., nodes with different classes tend to form edges). Existing methods deal with heterophily by mainly aggregating higher-order neighborhoods or combing the immediate representations, which leads to noise and irrelevant information in the result. But these methods did not change the propagation mechanism which works under homophily assumption (that is a fundamental part of GCNs). This makes it difficult to distinguish the representation of nodes from different classes. To address this problem, in this paper we design a novel propagation mechanism, which can automatically change the propagation and aggregation process according to homophily or heterophily between node pairs. To adaptively learn the propagation process, we introduce two measurements of homophily degree between node pairs, which is learned based on topological and attribute information, respectively. Then we incorporate the learnable homophily degree into the graph convolution framework, which is trained in an end-to-end schema, enabling it to go beyond the assumption of homophily. More importantly, we theoretically prove that our model can constrain the similarity of representations between nodes according to their homophily degree. Experiments on seven real-world datasets demonstrate that this new approach outperforms the state-of-the-art methods under heterophily or low homophily, and gains competitive performance under homophily.
Image segmentation is considered to be one of the critical tasks in hyperspectral remote sensing image processing. Recently, convolutional neural network (CNN) has established itself as a powerful model in segmentation and classification by demonstrating excellent performances. The use of a graphical model such as a conditional random field (CRF) contributes further in capturing contextual information and thus improving the segmentation performance. In this paper, we propose a method to segment hyperspectral images by considering both spectral and spatial information via a combined framework consisting of CNN and CRF. We use multiple spectral cubes to learn deep features using CNN, and then formulate deep CRF with CNN-based unary and pairwise potential functions to effectively extract the semantic correlations between patches consisting of three-dimensional data cubes. Effective piecewise training is applied in order to avoid the computationally expensive iterative CRF inference. Furthermore, we introduce a deep deconvolution network that improves the segmentation masks. We also introduce a new dataset and experimented our proposed method on it along with several widely adopted benchmark datasets to evaluate the effectiveness of our method. By comparing our results with those from several state-of-the-art models, we show the promising potential of our method.
Inspired by recent development of artificial satellite, remote sensing images have attracted extensive attention. Recently, noticeable progress has been made in scene classification and target detection.However, it is still not clear how to describe the remote sensing image content with accurate and concise sentences. In this paper, we investigate to describe the remote sensing images with accurate and flexible sentences. First, some annotated instructions are presented to better describe the remote sensing images considering the special characteristics of remote sensing images. Second, in order to exhaustively exploit the contents of remote sensing images, a large-scale aerial image data set is constructed for remote sensing image caption. Finally, a comprehensive review is presented on the proposed data set to fully advance the task of remote sensing caption. Extensive experiments on the proposed data set demonstrate that the content of the remote sensing image can be completely described by generating language descriptions. The data set is available at //github.com/2051/RSICD_optimal