Penrose tilings are the most famous aperiodic tilings, and they have been studied extensively. In particular, patterns composed with hexagons ($H$), boats ($B$) and stars ($S$) were soon exhibited and many physicists published on what they later called $HBS$ tilings, but no article or book combines all we know about them. This work is done here, before introducing new decorations and properties including explicit substitutions. For the latter, the star comes in three versions so we have 5 prototiles in what we call the Star tileset. Yet this set yields exactly the strict $HBS$ tilings formed using 3 tiles decorated with either the usual decorations (arrows) or Ammann bar markings for instance. Another new tileset called Gemstones is also presented, derived from the Star tileset.
Market fluctuations caused by overtrading are important components of systemic market risk. This study examines the effect of investor sentiment on intraday overtrading activities in the Chinese A-share market. Employing high-frequency sentiment indices inferred from social media posts on the Eastmoney forum Guba, the research focuses on constituents of the CSI 300 and CSI 500 indices over a period from 01/01/2018, to 12/30/2022. The empirical analysis indicates that investor sentiment exerts a significantly positive impact on intraday overtrading, with the influence being more pronounced among institutional investors relative to individual traders. Moreover, sentiment-driven overtrading is found to be more prevalent during bull markets as opposed to bear markets. Additionally, the effect of sentiment on overtrading is observed to be more pronounced among individual investors in large-cap stocks compared to small- and mid-cap stocks.
Deep neural networks and other modern machine learning models are often susceptible to adversarial attacks. Indeed, an adversary may often be able to change a model's prediction through a small, directed perturbation of the model's input - an issue in safety-critical applications. Adversarially robust machine learning is usually based on a minmax optimisation problem that minimises the machine learning loss under maximisation-based adversarial attacks. In this work, we study adversaries that determine their attack using a Bayesian statistical approach rather than maximisation. The resulting Bayesian adversarial robustness problem is a relaxation of the usual minmax problem. To solve this problem, we propose Abram - a continuous-time particle system that shall approximate the gradient flow corresponding to the underlying learning problem. We show that Abram approximates a McKean-Vlasov process and justify the use of Abram by giving assumptions under which the McKean-Vlasov process finds the minimiser of the Bayesian adversarial robustness problem. We discuss two ways to discretise Abram and show its suitability in benchmark adversarial deep learning experiments.
Although recently several foundation models for satellite remote sensing imagery have been proposed, they fail to address major challenges of real/operational applications. Indeed, embeddings that don't take into account the spectral, spatial and temporal dimensions of the data as well as the irregular or unaligned temporal sampling are of little use for most real world uses.As a consequence, we propose an ALIgned Sits Encoder (ALISE), a novel approach that leverages the spatial, spectral, and temporal dimensions of irregular and unaligned SITS while producing aligned latent representations. Unlike SSL models currently available for SITS, ALISE incorporates a flexible query mechanism to project the SITS into a common and learned temporal projection space. Additionally, thanks to a multi-view framework, we explore integration of instance discrimination along a masked autoencoding task to SITS. The quality of the produced representation is assessed through three downstream tasks: crop segmentation (PASTIS), land cover segmentation (MultiSenGE), and a novel crop change detection dataset. Furthermore, the change detection task is performed without supervision. The results suggest that the use of aligned representations is more effective than previous SSL methods for linear probing segmentation tasks.
A common method for estimating the Hessian operator from random samples on a low-dimensional manifold involves locally fitting a quadratic polynomial. Although widely used, it is unclear if this estimator introduces bias, especially in complex manifolds with boundaries and nonuniform sampling. Rigorous theoretical guarantees of its asymptotic behavior have been lacking. We show that, under mild conditions, this estimator asymptotically converges to the Hessian operator, with nonuniform sampling and curvature effects proving negligible, even near boundaries. Our analysis framework simplifies the intensive computations required for direct analysis.
The stochastic reaction-diffusion model driven by a multiplicative noise is examined. We construct the gradient discretisation method (GDM), an abstract framework combining several numerical method families. The paper provides the discretisation and proves the convergence of the approximate schemes using a compactness argument that works under natural assumptions on data. We also investigate, using a finite volume method, known as the hybrid mixed mimetic (HMM) approach, the effects of multiplicative noise on the dynamics of the travelling waves in the excitable media displayed by the model. Particularly, we consider how sufficiently high noise can cause waves to backfire or fail to propagate.
In this paper, we provide explicit formulas for the exact inverses of the symmetric tridiagonal near-Toeplitz matrices characterized by weak diagonal dominance in the Toeplitz part. Furthermore, these findings extend to scenarios where the corners of the near Toeplitz matrices lack diagonal dominance ($|\widetilde{b}| < 1$). Additionally, we compute the row sums and traces of the inverse matrices, thereby deriving upper bounds for their infinite norms. To demonstrate the practical applicability of our theoretical results, we present numerical examples addressing numerical solution of the Fisher problem using the fixed point method. Our findings reveal that the convergence rates of fixed-point iterations closely align with the expected rates, and there is minimal disparity between the upper bounds and the infinite norm of the inverse matrix. Specifically, this observation holds true for $|b| = 2$ with $|\widetilde{b}| \geq 1$. In other cases, there exists potential to enhance the obtained upper bounds.
The trustworthiness of Machine Learning (ML) models can be difficult to assess, but is critical in high-risk or ethically sensitive applications. Many models are treated as a `black-box' where the reasoning or criteria for a final decision is opaque to the user. To address this, some existing Explainable AI (XAI) approaches approximate model behaviour using perturbed data. However, such methods have been criticised for ignoring feature dependencies, with explanations being based on potentially unrealistic data. We propose a novel framework, CHILLI, for incorporating data context into XAI by generating contextually aware perturbations, which are faithful to the training data of the base model being explained. This is shown to improve both the soundness and accuracy of the explanations.
We consider the motion of incompressible viscous fluid in a rectangle, imposing the periodicity condition in one direction and the no-slip boundary condition in the other. Assuming that the flow is subject to an external random force, white in time and regular in space, we construct an estimator for the viscosity using only observations of the enstrophy. The goal of the paper is to prove that the estimator is strongly consistent and asymptotically normal. The proof of consistency is based on the explicit formula for the estimator and some bounds for trajectories, while that of asymptotic normality uses in addition mixing properties of the Navier-Stokes flow.
In the finite difference approximation of the fractional Laplacian the stiffness matrix is typically dense and needs to be approximated numerically. The effect of the accuracy in approximating the stiffness matrix on the accuracy in the whole computation is analyzed and shown to be significant. Four such approximations are discussed. While they are shown to work well with the recently developed grid-over finite difference method (GoFD) for the numerical solution of boundary value problems of the fractional Laplacian, they differ in accuracy, economics to compute, performance of preconditioning, and asymptotic decay away from the diagonal line. In addition, two preconditioners based on sparse and circulant matrices are discussed for the iterative solution of linear systems associated with the stiffness matrix. Numerical results in two and three dimensions are presented.
Although measuring held-out accuracy has been the primary approach to evaluate generalization, it often overestimates the performance of NLP models, while alternative approaches for evaluating models either focus on individual tasks or on specific behaviors. Inspired by principles of behavioral testing in software engineering, we introduce CheckList, a task-agnostic methodology for testing NLP models. CheckList includes a matrix of general linguistic capabilities and test types that facilitate comprehensive test ideation, as well as a software tool to generate a large and diverse number of test cases quickly. We illustrate the utility of CheckList with tests for three tasks, identifying critical failures in both commercial and state-of-art models. In a user study, a team responsible for a commercial sentiment analysis model found new and actionable bugs in an extensively tested model. In another user study, NLP practitioners with CheckList created twice as many tests, and found almost three times as many bugs as users without it.