This paper considers fair probabilistic binary classification where the outputs of primary interest are predicted probabilities, commonly referred to as scores. We formulate the problem of transforming scores to satisfy fairness constraints that are linear in conditional means of scores while minimizing a cross-entropy objective. The formulation can be applied directly to post-process classifier outputs and we also explore a pre-processing extension, thus allowing maximum freedom in selecting a classification algorithm. We derive a closed-form expression for the optimal transformed scores and a convex optimization problem for the transformation parameters. In the population limit, the transformed score function is the fairness-constrained minimizer of cross-entropy with respect to the true conditional probability of the outcome. In the finite sample setting, we propose a method called FairScoreTransformer to approach this solution using a combination of standard probabilistic classifiers and ADMM. We provide several consistency and finite-sample guarantees for FairScoreTransformer, relating to the transformation parameters and transformed score function that it obtains. Comprehensive experiments comparing to 10 existing methods show that FairScoreTransformer has advantages for score-based metrics such as Brier score and AUC while remaining competitive for binary label-based metrics such as accuracy.
Recent work has proposed stochastic Plackett-Luce (PL) ranking models as a robust choice for optimizing relevance and fairness metrics. Unlike their deterministic counterparts that require heuristic optimization algorithms, PL models are fully differentiable. Theoretically, they can be used to optimize ranking metrics via stochastic gradient descent. However, in practice, the computation of the gradient is infeasible because it requires one to iterate over all possible permutations of items. Consequently, actual applications rely on approximating the gradient via sampling techniques. In this paper, we introduce a novel algorithm: PL-Rank, that estimates the gradient of a PL ranking model w.r.t. both relevance and fairness metrics. Unlike existing approaches that are based on policy gradients, PL-Rank makes use of the specific structure of PL models and ranking metrics. Our experimental analysis shows that PL-Rank has a greater sample-efficiency and is computationally less costly than existing policy gradients, resulting in faster convergence at higher performance. PL-Rank further enables the industry to apply PL models for more relevant and fairer real-world ranking systems.
Minimizing cross-entropy over the softmax scores of a linear map composed with a high-capacity encoder is arguably the most popular choice for training neural networks on supervised learning tasks. However, recent works show that one can directly optimize the encoder instead, to obtain equally (or even more) discriminative representations via a supervised variant of a contrastive objective. In this work, we address the question whether there are fundamental differences in the sought-for representation geometry in the output space of the encoder at minimal loss. Specifically, we prove, under mild assumptions, that both losses attain their minimum once the representations of each class collapse to the vertices of a regular simplex, inscribed in a hypersphere. We provide empirical evidence that this configuration is attained in practice and that reaching a close-to-optimal state typically indicates good generalization performance. Yet, the two losses show remarkably different optimization behavior. The number of iterations required to perfectly fit to data scales superlinearly with the amount of randomly flipped labels for the supervised contrastive loss. This is in contrast to the approximately linear scaling previously reported for networks trained with cross-entropy.
Interpretation of Deep Neural Networks (DNNs) training as an optimal control problem with nonlinear dynamical systems has received considerable attention recently, yet the algorithmic development remains relatively limited. In this work, we make an attempt along this line by reformulating the training procedure from the trajectory optimization perspective. We first show that most widely-used algorithms for training DNNs can be linked to the Differential Dynamic Programming (DDP), a celebrated second-order trajectory optimization algorithm rooted in the Approximate Dynamic Programming. In this vein, we propose a new variant of DDP that can accept batch optimization for training feedforward networks, while integrating naturally with the recent progress in curvature approximation. The resulting algorithm features layer-wise feedback policies which improve convergence rate and reduce sensitivity to hyper-parameter over existing methods. We show that the algorithm is competitive against state-ofthe-art first and second order methods. Our work opens up new avenues for principled algorithmic design built upon the optimal control theory.
Sampling methods (e.g., node-wise, layer-wise, or subgraph) has become an indispensable strategy to speed up training large-scale Graph Neural Networks (GNNs). However, existing sampling methods are mostly based on the graph structural information and ignore the dynamicity of optimization, which leads to high variance in estimating the stochastic gradients. The high variance issue can be very pronounced in extremely large graphs, where it results in slow convergence and poor generalization. In this paper, we theoretically analyze the variance of sampling methods and show that, due to the composite structure of empirical risk, the variance of any sampling method can be decomposed into \textit{embedding approximation variance} in the forward stage and \textit{stochastic gradient variance} in the backward stage that necessities mitigating both types of variance to obtain faster convergence rate. We propose a decoupled variance reduction strategy that employs (approximate) gradient information to adaptively sample nodes with minimal variance, and explicitly reduces the variance introduced by embedding approximation. We show theoretically and empirically that the proposed method, even with smaller mini-batch sizes, enjoys a faster convergence rate and entails a better generalization compared to the existing methods.
This work presents a new strategy for multi-class classification that requires no class-specific labels, but instead leverages pairwise similarity between examples, which is a weaker form of annotation. The proposed method, meta classification learning, optimizes a binary classifier for pairwise similarity prediction and through this process learns a multi-class classifier as a submodule. We formulate this approach, present a probabilistic graphical model for it, and derive a surprisingly simple loss function that can be used to learn neural network-based models. We then demonstrate that this same framework generalizes to the supervised, unsupervised cross-task, and semi-supervised settings. Our method is evaluated against state of the art in all three learning paradigms and shows a superior or comparable accuracy, providing evidence that learning multi-class classification without multi-class labels is a viable learning option.
Implicit probabilistic models are models defined naturally in terms of a sampling procedure and often induces a likelihood function that cannot be expressed explicitly. We develop a simple method for estimating parameters in implicit models that does not require knowledge of the form of the likelihood function or any derived quantities, but can be shown to be equivalent to maximizing likelihood under some conditions. Our result holds in the non-asymptotic parametric setting, where both the capacity of the model and the number of data examples are finite. We also demonstrate encouraging experimental results.
Developing classification algorithms that are fair with respect to sensitive attributes of the data has become an important problem due to the growing deployment of classification algorithms in various social contexts. Several recent works have focused on fairness with respect to a specific metric, modeled the corresponding fair classification problem as a constrained optimization problem, and developed tailored algorithms to solve them. Despite this, there still remain important metrics for which we do not have fair classifiers and many of the aforementioned algorithms do not come with theoretical guarantees; perhaps because the resulting optimization problem is non-convex. The main contribution of this paper is a new meta-algorithm for classification that takes as input a large class of fairness constraints, with respect to multiple non-disjoint sensitive attributes, and which comes with provable guarantees. This is achieved by first developing a meta-algorithm for a large family of classification problems with convex constraints, and then showing that classification problems with general types of fairness constraints can be reduced to those in this family. We present empirical results that show that our algorithm can achieve near-perfect fairness with respect to various fairness metrics, and that the loss in accuracy due to the imposed fairness constraints is often small. Overall, this work unifies several prior works on fair classification, presents a practical algorithm with theoretical guarantees, and can handle fairness metrics that were previously not possible.
Stochastic gradient Markov chain Monte Carlo (SGMCMC) has become a popular method for scalable Bayesian inference. These methods are based on sampling a discrete-time approximation to a continuous time process, such as the Langevin diffusion. When applied to distributions defined on a constrained space, such as the simplex, the time-discretisation error can dominate when we are near the boundary of the space. We demonstrate that while current SGMCMC methods for the simplex perform well in certain cases, they struggle with sparse simplex spaces; when many of the components are close to zero. However, most popular large-scale applications of Bayesian inference on simplex spaces, such as network or topic models, are sparse. We argue that this poor performance is due to the biases of SGMCMC caused by the discretization error. To get around this, we propose the stochastic CIR process, which removes all discretization error and we prove that samples from the stochastic CIR process are asymptotically unbiased. Use of the stochastic CIR process within a SGMCMC algorithm is shown to give substantially better performance for a topic model and a Dirichlet process mixture model than existing SGMCMC approaches.
We consider the task of learning the parameters of a {\em single} component of a mixture model, for the case when we are given {\em side information} about that component, we call this the "search problem" in mixture models. We would like to solve this with computational and sample complexity lower than solving the overall original problem, where one learns parameters of all components. Our main contributions are the development of a simple but general model for the notion of side information, and a corresponding simple matrix-based algorithm for solving the search problem in this general setting. We then specialize this model and algorithm to four common scenarios: Gaussian mixture models, LDA topic models, subspace clustering, and mixed linear regression. For each one of these we show that if (and only if) the side information is informative, we obtain parameter estimates with greater accuracy, and also improved computation complexity than existing moment based mixture model algorithms (e.g. tensor methods). We also illustrate several natural ways one can obtain such side information, for specific problem instances. Our experiments on real data sets (NY Times, Yelp, BSDS500) further demonstrate the practicality of our algorithms showing significant improvement in runtime and accuracy.
Labeled Latent Dirichlet Allocation (LLDA) is an extension of the standard unsupervised Latent Dirichlet Allocation (LDA) algorithm, to address multi-label learning tasks. Previous work has shown it to perform in par with other state-of-the-art multi-label methods. Nonetheless, with increasing label sets sizes LLDA encounters scalability issues. In this work, we introduce Subset LLDA, a simple variant of the standard LLDA algorithm, that not only can effectively scale up to problems with hundreds of thousands of labels but also improves over the LLDA state-of-the-art. We conduct extensive experiments on eight data sets, with label sets sizes ranging from hundreds to hundreds of thousands, comparing our proposed algorithm with the previously proposed LLDA algorithms (Prior--LDA, Dep--LDA), as well as the state of the art in extreme multi-label classification. The results show a steady advantage of our method over the other LLDA algorithms and competitive results compared to the extreme multi-label classification algorithms.