亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The Multi-Modal Large Language Model (MLLM) refers to an extension of the Large Language Model (LLM) equipped with the capability to receive and infer multi-modal data. Spatial awareness stands as one of the crucial abilities of MLLM, encompassing diverse skills related to understanding spatial relationships among objects and between objects and the scene area. Industries such as autonomous driving, smart healthcare, robotics, virtual, and augmented reality heavily demand MLLM's spatial awareness capabilities. However, there exists a noticeable gap between the current spatial awareness capabilities of MLLM and the requirements set by human needs. To address this issue, this paper proposes using more precise spatial position information between objects to guide MLLM in providing more accurate responses to user-related inquiries. Specifically, for a particular multi-modal task, we utilize algorithms for acquiring geometric spatial information and scene graphs to obtain relevant geometric spatial information and scene details of objects involved in the query. Subsequently, based on this information, we direct MLLM to address spatial awareness-related queries posed by the user. Extensive experiments were conducted in benchmarks such as MME, MM-Vet, and other multi-modal large language models. The experimental results thoroughly confirm the efficacy of the proposed method in enhancing the spatial awareness tasks and associated tasks of MLLM.

相關內容

The purpose of this article is to investigate the viability of Multi-Carrier Modulation (MCM) systems based on the Fast Walsh Hadamard Transform (FWHT). In addition, a nonlinear Joint Low-Complexity Optimized Zero Forcing Successive Interference Cancellation (JLCOZF-SIC) equalizer is proposed. To that end, general equations for the number of flops of the proposed equalizer and various other equalizers are given. This article discusses the use of Banded Matrix Approximation (BMA) as a technique for reducing complexity. The proposed equalizer uses BMA to accomplish both equalization and co-Carrier Frequency Offset (co-CFO) corrections. In addition, three cases involving the proposed equalizer were investigated. In the first case, diagonal compensation is used. In the second case, BMA compensation is used. In the third case, complete matrix compensation is used. In the presence of frequency offset, noise, and frequency-selective Rayleigh fading environments, analysis and simulation results show that the OFDM-FWHT system with the proposed equalizer outperforms the conventional OFDM system with various linear and nonlinear equalizers.

The promising improvement in compression efficiency of Versatile Video Coding (VVC) compared to High Efficiency Video Coding (HEVC) comes at the cost of a non-negligible encoder side complexity. The largely increased complexity overhead is a possible obstacle towards its industrial implementation. Many papers have proposed acceleration methods for VVC. Still, a better understanding of VVC complexity, especially related to new partitions and coding tools, is desirable to help the design of new and better acceleration methods. For this purpose, statistical analyses have been conducted, with a focus on Coding Unit (CU) sizes and inter coding modes.

Neural ranking models (NRMs) have shown great success in information retrieval (IR). But their predictions can easily be manipulated using adversarial examples, which are crafted by adding imperceptible perturbations to legitimate documents. This vulnerability raises significant concerns about their reliability and hinders the widespread deployment of NRMs. By incorporating adversarial examples into training data, adversarial training has become the de facto defense approach to adversarial attacks against NRMs. However, this defense mechanism is subject to a trade-off between effectiveness and adversarial robustness. In this study, we establish theoretical guarantees regarding the effectiveness-robustness trade-off in NRMs. We decompose the robust ranking error into two components, i.e., a natural ranking error for effectiveness evaluation and a boundary ranking error for assessing adversarial robustness. Then, we define the perturbation invariance of a ranking model and prove it to be a differentiable upper bound on the boundary ranking error for attainable computation. Informed by our theoretical analysis, we design a novel \emph{perturbation-invariant adversarial training} (PIAT) method for ranking models to achieve a better effectiveness-robustness trade-off. We design a regularized surrogate loss, in which one term encourages the effectiveness to be maximized while the regularization term encourages the output to be smooth, so as to improve adversarial robustness. Experimental results on several ranking models demonstrate the superiority of PITA compared to existing adversarial defenses.

This paper studies the problem of forecasting general stochastic processes using a path-dependent extension of the Neural Jump ODE (NJ-ODE) framework \citep{herrera2021neural}. While NJ-ODE was the first framework to establish convergence guarantees for the prediction of irregularly observed time series, these results were limited to data stemming from It\^o-diffusions with complete observations, in particular Markov processes, where all coordinates are observed simultaneously. In this work, we generalise these results to generic, possibly non-Markovian or discontinuous, stochastic processes with incomplete observations, by utilising the reconstruction properties of the signature transform. These theoretical results are supported by empirical studies, where it is shown that the path-dependent NJ-ODE outperforms the original NJ-ODE framework in the case of non-Markovian data. Moreover, we show that PD-NJ-ODE can be applied successfully to classical stochastic filtering problems and to limit order book (LOB) data.

In the field of document understanding, significant advances have been made in the fine-tuning of Multimodal Large Language Models (MLLMs) with instruction-following data. Nevertheless, the potential of text-grounding capability within text-rich scenarios remains underexplored. In this paper, we present a text-grounding document understanding model, termed TGDoc, which addresses this deficiency by enhancing MLLMs with the ability to discern the spatial positioning of text within images. Empirical evidence suggests that text-grounding improves the model's interpretation of textual content, thereby elevating its proficiency in comprehending text-rich images. Specifically, we compile a dataset containing 99K PowerPoint presentations sourced from the internet. We formulate instruction tuning tasks including text detection, recognition, and spotting to facilitate the cohesive alignment between the visual encoder and large language model. Moreover, we curate a collection of text-rich images and prompt the text-only GPT-4 to generate 12K high-quality conversations, featuring textual locations within text-rich scenarios. By integrating text location data into the instructions, TGDoc is adept at discerning text locations during the visual question process. Extensive experiments demonstrate that our method achieves state-of-the-art performance across multiple text-rich benchmarks, validating the effectiveness of our method.

The proliferation of Artificial Intelligence-Generated Images (AGIs) has greatly expanded the Image Naturalness Assessment (INA) problem. Different from early definitions that mainly focus on tone-mapped images with limited distortions (e.g., exposure, contrast, and color reproduction), INA on AI-generated images is especially challenging as it has more diverse contents and could be affected by factors from multiple perspectives, including low-level technical distortions and high-level rationality distortions. In this paper, we take the first step to benchmark and assess the visual naturalness of AI-generated images. First, we construct the AI-Generated Image Naturalness (AGIN) database by conducting a large-scale subjective study to collect human opinions on the overall naturalness as well as perceptions from technical and rationality perspectives. AGIN verifies that naturalness is universally and disparately affected by both technical and rationality distortions. Second, we propose the Joint Objective Image Naturalness evaluaTor (JOINT), to automatically learn the naturalness of AGIs that aligns human ratings. Specifically, JOINT imitates human reasoning in naturalness evaluation by jointly learning both technical and rationality perspectives. Experimental results show our proposed JOINT significantly surpasses baselines for providing more subjectively consistent results on naturalness assessment. Our database and code will be released in //github.com/zijianchen98/AGIN.

Visual Place Recognition (VPR) is a critical task for performing global re-localization in visual perception systems. It requires the ability to accurately recognize a previously visited location under variations such as illumination, occlusion, appearance and viewpoint. In the case of robotic systems and augmented reality, the target devices for deployment are battery powered edge devices. Therefore whilst the accuracy of VPR methods is important so too is memory consumption and latency. Recently new works have focused on the recall@1 metric as a performance measure with limited focus on resource utilization. This has resulted in methods that use deep learning models too large to deploy on low powered edge devices. We hypothesize that these large models are highly over-parameterized and can be optimized to satisfy the constraints of a low powered embedded system whilst maintaining high recall performance. Our work studies the impact of compact convolutional network architecture design in combination with full-precision and mixed-precision post-training quantization on VPR performance. Importantly we not only measure performance via the recall@1 score but also measure memory consumption and latency. We characterize the design implications on memory, latency and recall scores and provide a number of design recommendations for VPR systems under these resource limitations.

We present a novel method, the Chain of Empathy (CoE) prompting, that utilizes insights from psychotherapy to induce Large Language Models (LLMs) to reason about human emotional states. This method is inspired by various psychotherapy approaches including Cognitive Behavioral Therapy (CBT), Dialectical Behavior Therapy (DBT), Person Centered Therapy (PCT), and Reality Therapy (RT), each leading to different patterns of interpreting clients' mental states. LLMs without reasoning generated predominantly exploratory responses. However, when LLMs used CoE reasoning, we found a more comprehensive range of empathetic responses aligned with the different reasoning patterns of each psychotherapy model. The CBT based CoE resulted in the most balanced generation of empathetic responses. The findings underscore the importance of understanding the emotional context and how it affects human and AI communication. Our research contributes to understanding how psychotherapeutic models can be incorporated into LLMs, facilitating the development of context-specific, safer, and empathetic AI.

In the past several years, the convergence of the last iterate of the Stochastic Gradient Descent (SGD) algorithm has triggered people's interest due to its good performance in practice but lack of theoretical understanding. For Lipschitz and convex functions, different works have established the optimal $O(\log(1/\delta)\log T/\sqrt{T})$ or $O(\sqrt{\log(1/\delta)/T})$ high-probability convergence rates for the final iterate, where $T$ is the time horizon and $\delta$ is the failure probability. However, to prove these bounds, all the existing works are limited to compact domains or require almost surely bounded noises. It is natural to ask whether the last iterate of SGD can still guarantee the optimal convergence rate but without these two restrictive assumptions. Besides this important question, there are still lots of theoretical problems lacking an answer. For example, compared with the last iterate convergence of SGD for non-smooth problems, only few results for smooth optimization have yet been developed. Additionally, the existing results are all limited to a non-composite objective and the standard Euclidean norm. It still remains unclear whether the last-iterate convergence can be provably extended to wider composite optimization and non-Euclidean norms. In this work, to address the issues mentioned above, we revisit the last-iterate convergence of stochastic gradient methods and provide the first unified way to prove the convergence rates both in expectation and in high probability to accommodate general domains, composite objectives, non-Euclidean norms, Lipschitz conditions, smoothness and (strong) convexity simultaneously. Additionally, we extend our analysis to obtain the last-iterate convergence under heavy-tailed noises.

Deep Convolutional Neural Networks (CNNs) are a special type of Neural Networks, which have shown state-of-the-art results on various competitive benchmarks. The powerful learning ability of deep CNN is largely achieved with the use of multiple non-linear feature extraction stages that can automatically learn hierarchical representation from the data. Availability of a large amount of data and improvements in the hardware processing units have accelerated the research in CNNs and recently very interesting deep CNN architectures are reported. The recent race in deep CNN architectures for achieving high performance on the challenging benchmarks has shown that the innovative architectural ideas, as well as parameter optimization, can improve the CNN performance on various vision-related tasks. In this regard, different ideas in the CNN design have been explored such as use of different activation and loss functions, parameter optimization, regularization, and restructuring of processing units. However, the major improvement in representational capacity is achieved by the restructuring of the processing units. Especially, the idea of using a block as a structural unit instead of a layer is gaining substantial appreciation. This survey thus focuses on the intrinsic taxonomy present in the recently reported CNN architectures and consequently, classifies the recent innovations in CNN architectures into seven different categories. These seven categories are based on spatial exploitation, depth, multi-path, width, feature map exploitation, channel boosting and attention. Additionally, it covers the elementary understanding of the CNN components and sheds light on the current challenges and applications of CNNs.

北京阿比特科技有限公司