亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In the third round of the NIST Post-Quantum Cryptography standardization project, the focus is on optimizing software and hardware implementations of candidate schemes. The winning schemes are CRYSTALS Kyber and CRYSTALS Dilithium, which serve as a Key Encapsulation Mechanism (KEM) and Digital Signature Algorithm (DSA), respectively. This study utilizes the TaPaSCo open-source framework to create hardware building blocks for both schemes using High-level Synthesis (HLS) from minimally modified ANSI C software reference implementations across all security levels. Additionally, a generic TaPaSCo host runtime application is developed in Rust to verify their functionality through the standard NIST interface, utilizing the corresponding Known Answer Test mechanism on actual hardware. Building on this foundation, the communication overhead for TaPaSCo hardware accelerators on PCIe-connected FPGA devices is evaluated and compared with previous work and optimized AVX2 software reference implementations. The results demonstrate the feasibility of verifying and evaluating the performance of Post-Quantum Cryptography accelerators on real hardware using TaPaSCo. Furthermore, the off-chip accelerator communication overhead of the NIST standard interface is measured, which, on its own, outweighs the execution wall clock time of the optimized software reference implementation of Kyber at Security Level 1.

相關內容

The emergence of large-scale AI models, like GPT-4, has significantly impacted academia and industry, driving the demand for high-performance computing (HPC) to accelerate workloads. To address this, we present HPCClusterScape, a visualization system that enhances the efficiency and transparency of shared HPC clusters for large-scale AI models. HPCClusterScape provides a comprehensive overview of system-level (e.g., partitions, hosts, and workload status) and application-level (e.g., identification of experiments and researchers) information, allowing HPC operators and machine learning researchers to monitor resource utilization and identify issues through customizable violation rules. The system includes diagnostic tools to investigate workload imbalances and synchronization bottlenecks in large-scale distributed deep learning experiments. Deployed in industrial-scale HPC clusters, HPCClusterScape incorporates user feedback and meets specific requirements. This paper outlines the challenges and prerequisites for efficient HPC operation, introduces the interactive visualization system, and highlights its contributions in addressing pain points and optimizing resource utilization in shared HPC clusters.

This paper investigates the use of computational tools and Open-Source Intelligence (OSINT) techniques for verifying online multimedia content, with a specific focus on real-world cases from the Russia-Ukraine conflict. Over a nine-month period from April to December 2022, we examine verification workflows, tools, and case studies published by \faktiskbar. Our study showcases the effectiveness of diverse resources, including AI tools, geolocation tools, internet archives, and social media monitoring platforms, in enabling journalists and fact-checkers to efficiently process and corroborate evidence, ensuring the dissemination of accurate information. This research underscores the vital role of computational tools and OSINT techniques in promoting evidence-based reporting and combatting misinformation. We also touch on the current limitations of available tools and prospects for future developments in multimedia verification.

Human hands possess remarkable dexterity and have long served as a source of inspiration for robotic manipulation. In this work, we propose a human $\textbf{H}$and$\textbf{-In}$formed visual representation learning framework to solve difficult $\textbf{Dex}$terous manipulation tasks ($\textbf{H-InDex}$) with reinforcement learning. Our framework consists of three stages: (i) pre-training representations with 3D human hand pose estimation, (ii) offline adapting representations with self-supervised keypoint detection, and (iii) reinforcement learning with exponential moving average BatchNorm. The last two stages only modify $0.36\%$ parameters of the pre-trained representation in total, ensuring the knowledge from pre-training is maintained to the full extent. We empirically study 12 challenging dexterous manipulation tasks and find that H-InDex largely surpasses strong baseline methods and the recent visual foundation models for motor control. Code is available at //yanjieze.com/H-InDex .

Reversible systems feature both forward computations and backward computations, where the latter undo the effects of the former in a causally consistent manner. The compositionality properties and equational characterizations of strong and weak variants of forward-reverse bisimilarity as well as of its two components, i.e., forward bisimilarity and reverse bisimilarity, have been investigated on a minimal process calculus for nondeterministic reversible systems that are sequential, so as to be neutral with respect to interleaving vs. truly concurrent semantics of parallel composition. In this paper we provide logical characterizations for the considered bisimilarities based on forward and backward modalities, which reveals that strong and weak reverse bisimilarities respectively correspond to strong and weak reverse trace equivalences. Moreover, we establish a clear connection between weak forward-reverse bisimilarity and branching bisimilarity, so that the former inherits two further logical characterizations from the latter over a specific class of processes.

This work presents a new method to design consensus controllers for perturbed double integrator systems whose interconnection is described by a directed graph containing a rooted spanning tree. We propose new robust controllers to solve the consensus and synchronization problems when the systems are under the effects of matched and unmatched disturbances. In both problems, we present simple continuous controllers, whose integral actions allow us to handle the disturbances. A rigorous stability analysis based on Lyapunov's direct method for unperturbed networked systems is presented. To assess the performance of our result, a representative simulation study is presented.

Searching in a denied environment is challenging for swarm robots as no assistance from GNSS, mapping, data sharing, and central processing is allowed. However, using olfactory and auditory signals to cooperate like animals could be an important way to improve the collaboration of swarm robots. In this paper, an Olfactory-Auditory augmented Bug algorithm (OA-Bug) is proposed for a swarm of autonomous robots to explore a denied environment. A simulation environment is built to measure the performance of OA-Bug. The coverage of the search task can reach 96.93% using OA-Bug, which is significantly improved compared with a similar algorithm, SGBA. Furthermore, experiments are conducted on real swarm robots to prove the validity of OA-Bug. Results show that OA-Bug can improve the performance of swarm robots in a denied environment.

Over the past few years, the rapid development of deep learning technologies for computer vision has greatly promoted the performance of medical image segmentation (MedISeg). However, the recent MedISeg publications usually focus on presentations of the major contributions (e.g., network architectures, training strategies, and loss functions) while unwittingly ignoring some marginal implementation details (also known as "tricks"), leading to a potential problem of the unfair experimental result comparisons. In this paper, we collect a series of MedISeg tricks for different model implementation phases (i.e., pre-training model, data pre-processing, data augmentation, model implementation, model inference, and result post-processing), and experimentally explore the effectiveness of these tricks on the consistent baseline models. Compared to paper-driven surveys that only blandly focus on the advantages and limitation analyses of segmentation models, our work provides a large number of solid experiments and is more technically operable. With the extensive experimental results on both the representative 2D and 3D medical image datasets, we explicitly clarify the effect of these tricks. Moreover, based on the surveyed tricks, we also open-sourced a strong MedISeg repository, where each of its components has the advantage of plug-and-play. We believe that this milestone work not only completes a comprehensive and complementary survey of the state-of-the-art MedISeg approaches, but also offers a practical guide for addressing the future medical image processing challenges including but not limited to small dataset learning, class imbalance learning, multi-modality learning, and domain adaptation. The code has been released at: //github.com/hust-linyi/MedISeg

The incredible development of federated learning (FL) has benefited various tasks in the domains of computer vision and natural language processing, and the existing frameworks such as TFF and FATE has made the deployment easy in real-world applications. However, federated graph learning (FGL), even though graph data are prevalent, has not been well supported due to its unique characteristics and requirements. The lack of FGL-related framework increases the efforts for accomplishing reproducible research and deploying in real-world applications. Motivated by such strong demand, in this paper, we first discuss the challenges in creating an easy-to-use FGL package and accordingly present our implemented package FederatedScope-GNN (FS-G), which provides (1) a unified view for modularizing and expressing FGL algorithms; (2) comprehensive DataZoo and ModelZoo for out-of-the-box FGL capability; (3) an efficient model auto-tuning component; and (4) off-the-shelf privacy attack and defense abilities. We validate the effectiveness of FS-G by conducting extensive experiments, which simultaneously gains many valuable insights about FGL for the community. Moreover, we employ FS-G to serve the FGL application in real-world E-commerce scenarios, where the attained improvements indicate great potential business benefits. We publicly release FS-G, as submodules of FederatedScope, at //github.com/alibaba/FederatedScope to promote FGL's research and enable broad applications that would otherwise be infeasible due to the lack of a dedicated package.

Deep neural networks (DNNs) are successful in many computer vision tasks. However, the most accurate DNNs require millions of parameters and operations, making them energy, computation and memory intensive. This impedes the deployment of large DNNs in low-power devices with limited compute resources. Recent research improves DNN models by reducing the memory requirement, energy consumption, and number of operations without significantly decreasing the accuracy. This paper surveys the progress of low-power deep learning and computer vision, specifically in regards to inference, and discusses the methods for compacting and accelerating DNN models. The techniques can be divided into four major categories: (1) parameter quantization and pruning, (2) compressed convolutional filters and matrix factorization, (3) network architecture search, and (4) knowledge distillation. We analyze the accuracy, advantages, disadvantages, and potential solutions to the problems with the techniques in each category. We also discuss new evaluation metrics as a guideline for future research.

Small data challenges have emerged in many learning problems, since the success of deep neural networks often relies on the availability of a huge amount of labeled data that is expensive to collect. To address it, many efforts have been made on training complex models with small data in an unsupervised and semi-supervised fashion. In this paper, we will review the recent progresses on these two major categories of methods. A wide spectrum of small data models will be categorized in a big picture, where we will show how they interplay with each other to motivate explorations of new ideas. We will review the criteria of learning the transformation equivariant, disentangled, self-supervised and semi-supervised representations, which underpin the foundations of recent developments. Many instantiations of unsupervised and semi-supervised generative models have been developed on the basis of these criteria, greatly expanding the territory of existing autoencoders, generative adversarial nets (GANs) and other deep networks by exploring the distribution of unlabeled data for more powerful representations. While we focus on the unsupervised and semi-supervised methods, we will also provide a broader review of other emerging topics, from unsupervised and semi-supervised domain adaptation to the fundamental roles of transformation equivariance and invariance in training a wide spectrum of deep networks. It is impossible for us to write an exclusive encyclopedia to include all related works. Instead, we aim at exploring the main ideas, principles and methods in this area to reveal where we are heading on the journey towards addressing the small data challenges in this big data era.

北京阿比特科技有限公司