This study explores the application of deep learning technologies in software development processes, particularly in automating code reviews, error prediction, and test generation to enhance code quality and development efficiency. Through a series of empirical studies, experimental groups using deep learning tools and control groups using traditional methods were compared in terms of code error rates and project completion times. The results demonstrated significant improvements in the experimental group, validating the effectiveness of deep learning technologies. The research also discusses potential optimization points, methodologies, and technical challenges of deep learning in software development, as well as how to integrate these technologies into existing software development workflows.
Many machine learning tasks, such as principal component analysis and low-rank matrix completion, give rise to manifold optimization problems. Although there is a large body of work studying the design and analysis of algorithms for manifold optimization in the centralized setting, there are currently very few works addressing the federated setting. In this paper, we consider nonconvex federated learning over a compact smooth submanifold in the setting of heterogeneous client data. We propose an algorithm that leverages stochastic Riemannian gradients and a manifold projection operator to improve computational efficiency, uses local updates to improve communication efficiency, and avoids client drift. Theoretically, we show that our proposed algorithm converges sub-linearly to a neighborhood of a first-order optimal solution by using a novel analysis that jointly exploits the manifold structure and properties of the loss functions. Numerical experiments demonstrate that our algorithm has significantly smaller computational and communication overhead than existing methods.
We propose a distributional framework for benchmarking socio-technical risks of foundation models with quantified statistical significance. Our approach hinges on a new statistical relative testing based on first and second order stochastic dominance of real random variables. We show that the second order statistics in this test are linked to mean-risk models commonly used in econometrics and mathematical finance to balance risk and utility when choosing between alternatives. Using this framework, we formally develop a risk-aware approach for foundation model selection given guardrails quantified by specified metrics. Inspired by portfolio optimization and selection theory in mathematical finance, we define a metrics portfolio for each model as a means to aggregate a collection of metrics, and perform model selection based on the stochastic dominance of these portfolios. The statistical significance of our tests is backed theoretically by an asymptotic analysis via central limit theorems instantiated in practice via a bootstrap variance estimate. We use our framework to compare various large language models regarding risks related to drifting from instructions and outputting toxic content.
The problem of reward design examines the interaction between a leader and a follower, where the leader aims to shape the follower's behavior to maximize the leader's payoff by modifying the follower's reward function. Current approaches to reward design rely on an accurate model of how the follower responds to reward modifications, which can be sensitive to modeling inaccuracies. To address this issue of sensitivity, we present a solution that offers robustness against uncertainties in modeling the follower, including 1) how the follower breaks ties in the presence of nonunique best responses, 2) inexact knowledge of how the follower perceives reward modifications, and 3) bounded rationality of the follower. Our robust solution is guaranteed to exist under mild conditions and can be obtained numerically by solving a mixed-integer linear program. Numerical experiments on multiple test cases demonstrate that our solution improves robustness compared to the standard approach without incurring significant additional computing costs.
This paper tackles the challenge of teaching code semantics to Large Language Models (LLMs) for program analysis by incorporating code symmetries into the model architecture. We introduce a group-theoretic framework that defines code symmetries as semantics-preserving transformations, where forming a code symmetry group enables precise and efficient reasoning of code semantics. Our solution, SymC, develops a novel variant of self-attention that is provably equivariant to code symmetries from the permutation group defined over the program dependence graph. SymC obtains superior performance on five program analysis tasks, outperforming state-of-the-art code models without any pre-training. Our results suggest that code LLMs that encode the code structural prior via the code symmetry group generalize better and faster.
The ability of machine learning (ML) algorithms to generalize well to unseen data has been studied through the lens of information theory, by bounding the generalization error with the input-output mutual information (MI), i.e., the MI between the training data and the learned hypothesis. Yet, these bounds have limited practicality for modern ML applications (e.g., deep learning), due to the difficulty of evaluating MI in high dimensions. Motivated by recent findings on the compressibility of neural networks, we consider algorithms that operate by slicing the parameter space, i.e., trained on random lower-dimensional subspaces. We introduce new, tighter information-theoretic generalization bounds tailored for such algorithms, demonstrating that slicing improves generalization. Our bounds offer significant computational and statistical advantages over standard MI bounds, as they rely on scalable alternative measures of dependence, i.e., disintegrated mutual information and $k$-sliced mutual information. Then, we extend our analysis to algorithms whose parameters do not need to exactly lie on random subspaces, by leveraging rate-distortion theory. This strategy yields generalization bounds that incorporate a distortion term measuring model compressibility under slicing, thereby tightening existing bounds without compromising performance or requiring model compression. Building on this, we propose a regularization scheme enabling practitioners to control generalization through compressibility. Finally, we empirically validate our results and achieve the computation of non-vacuous information-theoretic generalization bounds for neural networks, a task that was previously out of reach.
Hybrid dynamical systems are prevalent in science and engineering to express complex systems with continuous and discrete states. To learn the laws of systems, all previous methods for equation discovery in hybrid systems follow a two-stage paradigm, i.e. they first group time series into small cluster fragments and then discover equations in each fragment separately through methods in non-hybrid systems. Although effective, these methods do not fully take advantage of the commonalities in the shared dynamics of multiple fragments that are driven by the same equations. Besides, the two-stage paradigm breaks the interdependence between categorizing and representing dynamics that jointly form hybrid systems. In this paper, we reformulate the problem and propose an end-to-end learning framework, i.e. Amortized Equation Discovery (AMORE), to jointly categorize modes and discover equations characterizing the dynamics of each mode by all segments of the mode. Experiments on four hybrid and six non-hybrid systems show that our method outperforms previous methods on equation discovery, segmentation, and forecasting.
Contrastive learning models have achieved great success in unsupervised visual representation learning, which maximize the similarities between feature representations of different views of the same image, while minimize the similarities between feature representations of views of different images. In text summarization, the output summary is a shorter form of the input document and they have similar meanings. In this paper, we propose a contrastive learning model for supervised abstractive text summarization, where we view a document, its gold summary and its model generated summaries as different views of the same mean representation and maximize the similarities between them during training. We improve over a strong sequence-to-sequence text generation model (i.e., BART) on three different summarization datasets. Human evaluation also shows that our model achieves better faithfulness ratings compared to its counterpart without contrastive objectives.
Geometric deep learning (GDL), which is based on neural network architectures that incorporate and process symmetry information, has emerged as a recent paradigm in artificial intelligence. GDL bears particular promise in molecular modeling applications, in which various molecular representations with different symmetry properties and levels of abstraction exist. This review provides a structured and harmonized overview of molecular GDL, highlighting its applications in drug discovery, chemical synthesis prediction, and quantum chemistry. Emphasis is placed on the relevance of the learned molecular features and their complementarity to well-established molecular descriptors. This review provides an overview of current challenges and opportunities, and presents a forecast of the future of GDL for molecular sciences.
Recent contrastive representation learning methods rely on estimating mutual information (MI) between multiple views of an underlying context. E.g., we can derive multiple views of a given image by applying data augmentation, or we can split a sequence into views comprising the past and future of some step in the sequence. Contrastive lower bounds on MI are easy to optimize, but have a strong underestimation bias when estimating large amounts of MI. We propose decomposing the full MI estimation problem into a sum of smaller estimation problems by splitting one of the views into progressively more informed subviews and by applying the chain rule on MI between the decomposed views. This expression contains a sum of unconditional and conditional MI terms, each measuring modest chunks of the total MI, which facilitates approximation via contrastive bounds. To maximize the sum, we formulate a contrastive lower bound on the conditional MI which can be approximated efficiently. We refer to our general approach as Decomposed Estimation of Mutual Information (DEMI). We show that DEMI can capture a larger amount of MI than standard non-decomposed contrastive bounds in a synthetic setting, and learns better representations in a vision domain and for dialogue generation.
Benefit from the quick development of deep learning techniques, salient object detection has achieved remarkable progresses recently. However, there still exists following two major challenges that hinder its application in embedded devices, low resolution output and heavy model weight. To this end, this paper presents an accurate yet compact deep network for efficient salient object detection. More specifically, given a coarse saliency prediction in the deepest layer, we first employ residual learning to learn side-output residual features for saliency refinement, which can be achieved with very limited convolutional parameters while keep accuracy. Secondly, we further propose reverse attention to guide such side-output residual learning in a top-down manner. By erasing the current predicted salient regions from side-output features, the network can eventually explore the missing object parts and details which results in high resolution and accuracy. Experiments on six benchmark datasets demonstrate that the proposed approach compares favorably against state-of-the-art methods, and with advantages in terms of simplicity, efficiency (45 FPS) and model size (81 MB).