亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

AI fairy tale companions play an important role in early childhood education as an augmentation for parents' efforts to close the participation gap and boost kids' mental and language development. Existing systems are generally designed to provide vivid materials as unidirectional entertaining reading environments, e.g, visualizing inputting texts. However, due to the limited vocabulary of kids, these systems failed to afford effective interaction to motivate kids to write their own fairy tales. In this work, we propose AI.R Taletorium, an illustrative, immersive, and inclusive multimodal AI companion, for interactive fairy tale co-creation that actively involves kids to create fairy tales with both the AI agent and their normal peers. AI.R Taletorium consists a neural story generator and a doodler-based fairy tale visualizer. We design a character-centric bidirectional connection mechanism between the story generator and visualizer equipped with Contrastive Language Image Pretraining (CLIP), thus enabling kids to participant in the story generation process by simple sketching. Extensive experiments and user studies show that our system was able to generate and visualize meaningful and vivid fairy tales with limited training data and complete the full interaction cycle under various inputs (text, doodler) through the bidirectional connection.

相關內容

IFIP TC13 Conference on Human-Computer Interaction是人機交互領域的研究者和實踐者展示其工作的重要平臺。多年來,這些會議吸引了來自幾個國家和文化的研究人員。官網鏈接: · 多峰值 · 學成 · 可辨認的 · Performance ·
2022 年 2 月 2 日

A common vision from science fiction is that robots will one day inhabit our physical spaces, sense the world as we do, assist our physical labours, and communicate with us through natural language. Here we study how to design artificial agents that can interact naturally with humans using the simplification of a virtual environment. We show that imitation learning of human-human interactions in a simulated world, in conjunction with self-supervised learning, is sufficient to produce a multimodal interactive agent, which we call MIA, that successfully interacts with non-adversarial humans 75% of the time. We further identify architectural and algorithmic techniques that improve performance, such as hierarchical action selection. Altogether, our results demonstrate that imitation of multi-modal, real-time human behaviour may provide a straightforward and surprisingly effective means of imbuing agents with a rich behavioural prior from which agents might then be fine-tuned for specific purposes, thus laying a foundation for training capable agents for interactive robots or digital assistants. A video of MIA's behaviour may be found at //youtu.be/ZFgRhviF7mY

With its growing number of deployed devices and applications, the Internet of Things (IoT) raises significant challenges for network maintenance procedures. In this work we address a problem of active fault detection in an IoT scenario, whereby a monitor can probe a remote device in order to acquire fresh information and facilitate fault detection. However, probing could have a significant impact on the system's energy and communication resources. To this end, we utilize Age of Information as a measure of the freshness of information at the monitor and adopt a semantics-aware communication approach between the monitor and the remote device. In semantics-aware communications, the processes of generating and transmitting information are treated jointly to consider the importance of information and the purpose of communication. We formulate the problem as a Partially Observable Markov Decision Process and show analytically that the optimal policy is of a threshold type. Finally, we use a computationally efficient stochastic approximation algorithm to approximate the optimal policy and present numerical results that exhibit the advantage of our approach compared to a conventional delay-based probing policy.

The logico-pluralist LogiKEy knowledge engineering methodology and framework is exemplarily applied to the modelling of a theory of legal balancing in which legal knowledge (cases and laws) is encoded by utilising context-dependent value preferences. The theory obtained is then used to formalise, automatically evaluate, and reconstruct prominent property law cases (involving appropriation of wild animals) within the Isabelle/HOL proof assistant system. This illustrates how LogiKEy can harness interactive and automated theorem proving technology to provide a testbed for the development and formal verification of legal domain-specific languages and theories. With the work reported here we establish novel bridges between latest research in knowledge representation and reasoning in non-classical logics, automated theorem proving, and applications in legal reasoning.

Predictive maintenance systems have the potential to significantly reduce costs for maintaining aircraft fleets as well as provide improved safety by detecting maintenance issues before they come severe. However, the development of such systems has been limited due to a lack of publicly labeled multivariate time series (MTS) sensor data. MTS classification has advanced greatly over the past decade, but there is a lack of sufficiently challenging benchmarks for new methods. This work introduces the NGAFID Maintenance Classification (NGAFID-MC) dataset as a novel benchmark in terms of difficulty, number of samples, and sequence length. NGAFID-MC consists of over 7,500 labeled flights, representing over 11,500 hours of per second flight data recorder readings of 23 sensor parameters. Using this benchmark, we demonstrate that Recurrent Neural Network (RNN) methods are not well suited for capturing temporally distant relationships and propose a new architecture called Convolutional Multiheaded Self Attention (Conv-MHSA) that achieves greater classification performance at greater computational efficiency. We also demonstrate that image inspired augmentations of cutout, mixup, and cutmix, can be used to reduce overfitting and improve generalization in MTS classification. Our best trained models have been incorporated back into the NGAFID to allow users to potentially detect flights that require maintenance as well as provide feedback to further expand and refine the NGAFID-MC dataset.

Human parsing is for pixel-wise human semantic understanding. As human bodies are underlying hierarchically structured, how to model human structures is the central theme in this task. Focusing on this, we seek to simultaneously exploit the representational capacity of deep graph networks and the hierarchical human structures. In particular, we provide following two contributions. First, three kinds of part relations, i.e., decomposition, composition, and dependency, are, for the first time, completely and precisely described by three distinct relation networks. This is in stark contrast to previous parsers, which only focus on a portion of the relations and adopt a type-agnostic relation modeling strategy. More expressive relation information can be captured by explicitly imposing the parameters in the relation networks to satisfy the specific characteristics of different relations. Second, previous parsers largely ignore the need for an approximation algorithm over the loopy human hierarchy, while we instead address an iterative reasoning process, by assimilating generic message-passing networks with their edge-typed, convolutional counterparts. With these efforts, our parser lays the foundation for more sophisticated and flexible human relation patterns of reasoning. Comprehensive experiments on five datasets demonstrate that our parser sets a new state-of-the-art on each.

Generating natural language requires conveying content in an appropriate style. We explore two related tasks on generating text of varying formality: monolingual formality transfer and formality-sensitive machine translation. We propose to solve these tasks jointly using multi-task learning, and show that our models achieve state-of-the-art performance for formality transfer and are able to perform formality-sensitive translation without being explicitly trained on style-annotated translation examples.

Visual language grounding is widely studied in modern neural image captioning systems, which typically adopts an encoder-decoder framework consisting of two principal components: a convolutional neural network (CNN) for image feature extraction and a recurrent neural network (RNN) for language caption generation. To study the robustness of language grounding to adversarial perturbations in machine vision and perception, we propose Show-and-Fool, a novel algorithm for crafting adversarial examples in neural image captioning. The proposed algorithm provides two evaluation approaches, which check whether neural image captioning systems can be mislead to output some randomly chosen captions or keywords. Our extensive experiments show that our algorithm can successfully craft visually-similar adversarial examples with randomly targeted captions or keywords, and the adversarial examples can be made highly transferable to other image captioning systems. Consequently, our approach leads to new robustness implications of neural image captioning and novel insights in visual language grounding.

Recommender systems can mitigate the information overload problem by suggesting users' personalized items. In real-world recommendations such as e-commerce, a typical interaction between the system and its users is -- users are recommended a page of items and provide feedback; and then the system recommends a new page of items. To effectively capture such interaction for recommendations, we need to solve two key problems -- (1) how to update recommending strategy according to user's \textit{real-time feedback}, and 2) how to generate a page of items with proper display, which pose tremendous challenges to traditional recommender systems. In this paper, we study the problem of page-wise recommendations aiming to address aforementioned two challenges simultaneously. In particular, we propose a principled approach to jointly generate a set of complementary items and the corresponding strategy to display them in a 2-D page; and propose a novel page-wise recommendation framework based on deep reinforcement learning, DeepPage, which can optimize a page of items with proper display based on real-time feedback from users. The experimental results based on a real-world e-commerce dataset demonstrate the effectiveness of the proposed framework.

Though quite challenging, leveraging large-scale unlabeled or partially labeled images in a cost-effective way has increasingly attracted interests for its great importance to computer vision. To tackle this problem, many Active Learning (AL) methods have been developed. However, these methods mainly define their sample selection criteria within a single image context, leading to the suboptimal robustness and impractical solution for large-scale object detection. In this paper, aiming to remedy the drawbacks of existing AL methods, we present a principled Self-supervised Sample Mining (SSM) process accounting for the real challenges in object detection. Specifically, our SSM process concentrates on automatically discovering and pseudo-labeling reliable region proposals for enhancing the object detector via the introduced cross image validation, i.e., pasting these proposals into different labeled images to comprehensively measure their values under different image contexts. By resorting to the SSM process, we propose a new AL framework for gradually incorporating unlabeled or partially labeled data into the model learning while minimizing the annotating effort of users. Extensive experiments on two public benchmarks clearly demonstrate our proposed framework can achieve the comparable performance to the state-of-the-art methods with significantly fewer annotations.

Monolingual data have been demonstrated to be helpful in improving translation quality of both statistical machine translation (SMT) systems and neural machine translation (NMT) systems, especially in resource-poor or domain adaptation tasks where parallel data are not rich enough. In this paper, we propose a novel approach to better leveraging monolingual data for neural machine translation by jointly learning source-to-target and target-to-source NMT models for a language pair with a joint EM optimization method. The training process starts with two initial NMT models pre-trained on parallel data for each direction, and these two models are iteratively updated by incrementally decreasing translation losses on training data. In each iteration step, both NMT models are first used to translate monolingual data from one language to the other, forming pseudo-training data of the other NMT model. Then two new NMT models are learnt from parallel data together with the pseudo training data. Both NMT models are expected to be improved and better pseudo-training data can be generated in next step. Experiment results on Chinese-English and English-German translation tasks show that our approach can simultaneously improve translation quality of source-to-target and target-to-source models, significantly outperforming strong baseline systems which are enhanced with monolingual data for model training including back-translation.

北京阿比特科技有限公司