亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Designing natural language interfaces has historically required collecting supervised data to translate user requests into carefully designed intent representations. This requires enumerating and labeling a long tail of user requests, which is challenging. At the same time, large language models (LLMs) encode knowledge about goals and plans that can help conversational assistants interpret user requests requiring numerous steps to complete. We introduce an approach to handle complex-intent-bearing utterances from a user via a process of hierarchical natural language decomposition and interpretation. Our approach uses a pre-trained language model to decompose a complex utterance into a sequence of simpler natural language steps and interprets each step using the language-to-program model designed for the interface. To test our approach, we collect and release DeCU -- a new NL-to-program benchmark to evaluate Decomposition of Complex Utterances. Experiments show that the proposed approach enables the interpretation of complex utterances with almost no complex training data, while outperforming standard few-shot prompting approaches.

相關內容

The online diffusion of information related to Europe and migration has been little investigated from an external point of view. However, this is a very relevant topic, especially if users have had no direct contact with Europe and its perception depends solely on information retrieved online. In this work we analyse the information circulating online about Europe and migration after retrieving a large amount of data from social media (Twitter), to gain new insights into topics, magnitude, and dynamics of their diffusion. We combine retweets and hashtags network analysis with geolocation of users, linking thus data to geography and allowing analysis from an "outside Europe" perspective, with a special focus on Africa. We also introduce a novel approach based on cross-lingual quotes, i.e. when content in a language is commented and retweeted in another language, assuming these interactions are a proxy for connections between very distant communities. Results show how the majority of online discussions occurs at a national level, especially when discussing migration. Language (English) is pivotal for information to become transnational and reach far. Transnational information flow is strongly unbalanced, with content mainly produced in Europe and amplified outside. Conversely Europe-based accounts tend to be self-referential when they discuss migration-related topics. Football is the most exported topic from Europe worldwide. Moreover, important nodes in the communities discussing migration-related topics include accounts of official institutions and international agencies, together with journalists, news, commentators and activists.

The successful adaptation of multilingual language models (LMs) to a specific language-task pair critically depends on the availability of data tailored for that condition. While cross-lingual transfer (XLT) methods have contributed to addressing this data scarcity problem, there still exists ongoing debate about the mechanisms behind their effectiveness. In this work, we focus on one of promising assumptions about inner workings of XLT, that it encourages multilingual LMs to place greater emphasis on language-agnostic or task-specific features. We test this hypothesis by examining how the patterns of XLT change with a varying number of source languages involved in the process. Our experimental findings show that the use of multiple source languages in XLT-a technique we term Multi-Source Language Training (MSLT)-leads to increased mingling of embedding spaces for different languages, supporting the claim that XLT benefits from making use of language-independent information. On the other hand, we discover that using an arbitrary combination of source languages does not always guarantee better performance. We suggest simple heuristics for identifying effective language combinations for MSLT and empirically prove its effectiveness.

Although robust statistical estimators are less affected by outlying observations, their computation is usually more challenging. This is particularly the case in high-dimensional sparse settings. The availability of new optimization procedures, mainly developed in the computer science domain, offers new possibilities for the field of robust statistics. This paper investigates how such procedures can be used for robust sparse association estimators. The problem can be split into a robust estimation step followed by an optimization for the remaining decoupled, (bi-)convex problem. A combination of the augmented Lagrangian algorithm and adaptive gradient descent is implemented to also include suitable constraints for inducing sparsity. We provide results concerning the precision of the algorithm and show the advantages over existing algorithms in this context. High-dimensional empirical examples underline the usefulness of this procedure. Extensions to other robust sparse estimators are possible.

Natural language and search interfaces intuitively facilitate data exploration and provide visualization responses to diverse analytical queries based on the underlying datasets. However, these interfaces often fail to interpret more complex analytical intents, such as discerning subtleties and quantifiable differences between terms like "bump" and "spike" in the context of COVID cases, for example. We address this gap by extending the capabilities of a data exploration search interface for interpreting semantic concepts in time series trends. We first create a comprehensive dataset of semantic concepts by mapping quantifiable univariate data trends such as slope and angle to crowdsourced, semantically meaningful trend labels. The dataset contains quantifiable properties that capture the slope-scalar effect of semantic modifiers like "sharply" and "gradually," as well as multi-line trends (e.g., "peak," "valley"). We demonstrate the utility of this dataset in SlopeSeeker, a tool that supports natural language querying of quantifiable trends, such as "show me stocks that tanked in 2010." The tool incorporates novel scoring and ranking techniques based on semantic relevance and visual prominence to present relevant trend chart responses containing these semantic trend concepts. In addition, SlopeSeeker provides a faceted search interface for users to navigate a semantic hierarchy of concepts from general trends (e.g., "increase") to more specific ones (e.g., "sharp increase"). A preliminary user evaluation of the tool demonstrates that the search interface supports greater expressivity of queries containing concepts that describe data trends. We identify potential future directions for leveraging our publicly available quantitative semantics dataset in other data domains and for novel visual analytics interfaces.

Many studies have demonstrated that large language models (LLMs) can produce harmful responses, exposing users to unexpected risks when LLMs are deployed. Previous studies have proposed comprehensive taxonomies of the risks posed by LLMs, as well as corresponding prompts that can be used to examine the safety mechanisms of LLMs. However, the focus has been almost exclusively on English, and little has been explored for other languages. Here we aim to bridge this gap. We first introduce a dataset for the safety evaluation of Chinese LLMs, and then extend it to two other scenarios that can be used to better identify false negative and false positive examples in terms of risky prompt rejections. We further present a set of fine-grained safety assessment criteria for each risk type, facilitating both manual annotation and automatic evaluation in terms of LLM response harmfulness. Our experiments on five LLMs show that region-specific risks are the prevalent type of risk, presenting the major issue with all Chinese LLMs we experimented with. Warning: this paper contains example data that may be offensive, harmful, or biased.

In a misspecified social learning setting, agents are condescending if they perceive their peers as having private information that is of lower quality than it is in reality. Applying this to a standard sequential model, we show that outcomes improve when agents are mildly condescending. In contrast, too much condescension leads to worse outcomes, as does anti-condescension.

The self-rationalising capabilities of large language models (LLMs) have been explored in restricted settings, using task/specific data sets. However, current LLMs do not (only) rely on specifically annotated data; nonetheless, they frequently explain their outputs. The properties of the generated explanations are influenced by the pre-training corpus and by the target data used for instruction fine-tuning. As the pre-training corpus includes a large amount of human-written explanations "in the wild", we hypothesise that LLMs adopt common properties of human explanations. By analysing the outputs for a multi-domain instruction fine-tuning data set, we find that generated explanations show selectivity and contain illustrative elements, but less frequently are subjective or misleading. We discuss reasons and consequences of the properties' presence or absence. In particular, we outline positive and negative implications depending on the goals and user groups of the self-rationalising system.

Deep neural networks have revolutionized many machine learning tasks in power systems, ranging from pattern recognition to signal processing. The data in these tasks is typically represented in Euclidean domains. Nevertheless, there is an increasing number of applications in power systems, where data are collected from non-Euclidean domains and represented as the graph-structured data with high dimensional features and interdependency among nodes. The complexity of graph-structured data has brought significant challenges to the existing deep neural networks defined in Euclidean domains. Recently, many studies on extending deep neural networks for graph-structured data in power systems have emerged. In this paper, a comprehensive overview of graph neural networks (GNNs) in power systems is proposed. Specifically, several classical paradigms of GNNs structures (e.g., graph convolutional networks, graph recurrent neural networks, graph attention networks, graph generative networks, spatial-temporal graph convolutional networks, and hybrid forms of GNNs) are summarized, and key applications in power systems such as fault diagnosis, power prediction, power flow calculation, and data generation are reviewed in detail. Furthermore, main issues and some research trends about the applications of GNNs in power systems are discussed.

Recent developments in image classification and natural language processing, coupled with the rapid growth in social media usage, have enabled fundamental advances in detecting breaking events around the world in real-time. Emergency response is one such area that stands to gain from these advances. By processing billions of texts and images a minute, events can be automatically detected to enable emergency response workers to better assess rapidly evolving situations and deploy resources accordingly. To date, most event detection techniques in this area have focused on image-only or text-only approaches, limiting detection performance and impacting the quality of information delivered to crisis response teams. In this paper, we present a new multimodal fusion method that leverages both images and texts as input. In particular, we introduce a cross-attention module that can filter uninformative and misleading components from weak modalities on a sample by sample basis. In addition, we employ a multimodal graph-based approach to stochastically transition between embeddings of different multimodal pairs during training to better regularize the learning process as well as dealing with limited training data by constructing new matched pairs from different samples. We show that our method outperforms the unimodal approaches and strong multimodal baselines by a large margin on three crisis-related tasks.

In order to answer natural language questions over knowledge graphs, most processing pipelines involve entity and relation linking. Traditionally, entity linking and relation linking has been performed either as dependent sequential tasks or independent parallel tasks. In this paper, we propose a framework called "EARL", which performs entity linking and relation linking as a joint single task. EARL uses a graph connection based solution to the problem. We model the linking task as an instance of the Generalised Travelling Salesman Problem (GTSP) and use GTSP approximate algorithm solutions. We later develop EARL which uses a pair-wise graph-distance based solution to the problem.The system determines the best semantic connection between all keywords of the question by referring to a knowledge graph. This is achieved by exploiting the "connection density" between entity candidates and relation candidates. The "connection density" based solution performs at par with the approximate GTSP solution.We have empirically evaluated the framework on a dataset with 5000 questions. Our system surpasses state-of-the-art scores for entity linking task by reporting an accuracy of 0.65 to 0.40 from the next best entity linker.

北京阿比特科技有限公司