Robotic grasping refers to making a robotic system pick an object by applying forces and torques on its surface. Many recent studies use data-driven approaches to address grasping, but the sparse reward nature of this task made the learning process challenging to bootstrap. To avoid constraining the operational space, an increasing number of works propose grasping datasets to learn from. But most of them are limited to simulations. The present paper investigates how automatically generated grasps can be exploited in the real world. More than 7000 reach-and-grasp trajectories have been generated with Quality-Diversity (QD) methods on 3 different arms and grippers, including parallel fingers and a dexterous hand, and tested in the real world. Conducted analysis on the collected measure shows correlations between several Domain Randomization-based quality criteria and sim-to-real transferability. Key challenges regarding the reality gap for grasping have been identified, stressing matters on which researchers on grasping should focus in the future. A QD approach has finally been proposed for making grasps more robust to domain randomization, resulting in a transfer ratio of 84% on the Franka Research 3 arm.
The convergence of many numerical optimization techniques is highly dependent on the initial guess given to the solver. To address this issue, we propose a novel approach that utilizes tensor methods to initialize existing optimization solvers near global optima. Our method does not require access to a database of good solutions. We first transform the cost function, which depends on both task parameters and optimization variables, into a probability density function. Unlike existing approaches, the joint probability distribution of the task parameters and optimization variables is approximated using the Tensor Train model, which enables efficient conditioning and sampling. We treat the task parameters as random variables, and for a given task, we generate samples for decision variables from the conditional distribution to initialize the optimization solver. Our method can produce multiple solutions (when they exist) faster than existing methods. We first evaluate the approach on benchmark functions for numerical optimization that are hard to solve using gradient-based optimization solvers with a naive initialization. The results show that the proposed method can generate samples close to global optima and from multiple modes. We then demonstrate the generality and relevance of our framework to robotics by applying it to inverse kinematics with obstacles and motion planning problems with a 7-DoF manipulator.
Data entry forms use completeness requirements to specify the fields that are required or optional to fill for collecting necessary information from different types of users. However, some required fields may not be applicable for certain types of users anymore. Nevertheless, they may still be incorrectly marked as required in the form; we call such fields obsolete required fields. Since obsolete required fields usually have not-null validation checks before submitting the form, users have to enter meaningless values in such fields in order to complete the form submission. These meaningless values threaten the quality of the filled data. To avoid users filling meaningless values, existing techniques usually rely on manually written rules to identify the obsolete required fields and relax their completeness requirements. However, these techniques are ineffective and costly. In this paper, we propose LACQUER, a learning-based automated approach for relaxing the completeness requirements of data entry forms. LACQUER builds Bayesian Network models to automatically learn conditions under which users had to fill meaningless values. To improve its learning ability, LACQUER identifies the cases where a required field is only applicable for a small group of users, and uses SMOTE, an oversampling technique, to generate more instances on such fields for effectively mining dependencies on them. Our experimental results show that LACQUER can accurately relax the completeness requirements of required fields in data entry forms with precision values ranging between 0.76 and 0.90 on different datasets. LACQUER can prevent users from filling 20% to 64% of meaningless values, with negative predictive values between 0.72 and 0.91. Furthermore, LACQUER is efficient; it takes at most 839 ms to predict the completeness requirement of an instance.
Autonomous terrain traversal of articulated tracked robots can reduce operator cognitive load to enhance task efficiency and facilitate extensive deployment. We present a novel hybrid trajectory optimization method aimed at generating efficient, stable, and smooth traversal motions. To achieve this, we develop a planar robot-terrain contact model and divide the robot's motion into hybrid modes of driving and traversing. By using a generalized coordinate description, the configuration space dimension is reduced, which facilitates real-time planning. The hybrid trajectory optimization is transcribed into a nonlinear programming problem and divided into subproblems to be solved in a receding-horizon planning fashion. Mode switching is facilitated by associating optimized motion durations with a predefined traversal sequence. A multi-objective cost function is formulated to further improve the traversal performance. Additionally, map sampling, terrain simplification, and track?ing controller modules are integrated into the autonomous terrain traversal system. Our approach is validated in simulation and real-world scenarios with the Searcher robotic platform. Comparative experiments with expert operator control and state?of-the-art methods show advantages in terms of time and energy efficiency, stability, and smoothness of motion.
`3D Semantic Scene Completion (SSC) has emerged as a nascent and pivotal undertaking in autonomous driving, aiming to predict voxel occupancy within volumetric scenes. However, prevailing methodologies primarily focus on voxel-wise feature aggregation, while neglecting instance semantics and scene context. In this paper, we present a novel paradigm termed Symphonies (Scene-from-Insts), that delves into the integration of instance queries to orchestrate 2D-to-3D reconstruction and 3D scene modeling. Leveraging our proposed Serial Instance-Propagated Attentions, Symphonies dynamically encodes instance-centric semantics, facilitating intricate interactions between image-based and volumetric domains. Simultaneously, Symphonies enables holistic scene comprehension by capturing context through the efficient fusion of instance queries, alleviating geometric ambiguity such as occlusion and perspective errors through contextual scene reasoning. Experimental results demonstrate that Symphonies achieves state-of-the-art performance on challenging benchmarks SemanticKITTI and SSCBench-KITTI-360, yielding remarkable mIoU scores of 15.04 and 18.58, respectively. These results showcase the paradigm's promising advancements. The code is available at //github.com/hustvl/Symphonies.
Large Language Models (LLMs) have proven effective at In-Context Learning (ICL), an ability that allows them to create predictors from labeled examples. Few studies have explored the interplay between ICL and specific properties of functions it attempts to approximate. In our study, we use a formal framework to explore ICL and propose a new task of approximating functions with varying number of minima. We implement a method that allows for producing functions with given inputs as minima. We find that increasing the number of minima degrades ICL performance. At the same time, our evaluation shows that ICL outperforms 2-layer Neural Network (2NN) model. Furthermore, ICL learns faster than 2NN in all settings. We validate the findings through a set of few-shot experiments across various hyperparameter configurations.
As artificial intelligence (AI) models continue to scale up, they are becoming more capable and integrated into various forms of decision-making systems. For models involved in moral decision-making, also known as artificial moral agents (AMA), interpretability provides a way to trust and understand the agent's internal reasoning mechanisms for effective use and error correction. In this paper, we provide an overview of this rapidly-evolving sub-field of AI interpretability, introduce the concept of the Minimum Level of Interpretability (MLI) and recommend an MLI for various types of agents, to aid their safe deployment in real-world settings.
Large Language Models (LLMs) have emerged as powerful tools in the field of Natural Language Processing (NLP) and have recently gained significant attention in the domain of Recommendation Systems (RS). These models, trained on massive amounts of data using self-supervised learning, have demonstrated remarkable success in learning universal representations and have the potential to enhance various aspects of recommendation systems by some effective transfer techniques such as fine-tuning and prompt tuning, and so on. The crucial aspect of harnessing the power of language models in enhancing recommendation quality is the utilization of their high-quality representations of textual features and their extensive coverage of external knowledge to establish correlations between items and users. To provide a comprehensive understanding of the existing LLM-based recommendation systems, this survey presents a taxonomy that categorizes these models into two major paradigms, respectively Discriminative LLM for Recommendation (DLLM4Rec) and Generative LLM for Recommendation (GLLM4Rec), with the latter being systematically sorted out for the first time. Furthermore, we systematically review and analyze existing LLM-based recommendation systems within each paradigm, providing insights into their methodologies, techniques, and performance. Additionally, we identify key challenges and several valuable findings to provide researchers and practitioners with inspiration.
The dominating NLP paradigm of training a strong neural predictor to perform one task on a specific dataset has led to state-of-the-art performance in a variety of applications (eg. sentiment classification, span-prediction based question answering or machine translation). However, it builds upon the assumption that the data distribution is stationary, ie. that the data is sampled from a fixed distribution both at training and test time. This way of training is inconsistent with how we as humans are able to learn from and operate within a constantly changing stream of information. Moreover, it is ill-adapted to real-world use cases where the data distribution is expected to shift over the course of a model's lifetime. The first goal of this thesis is to characterize the different forms this shift can take in the context of natural language processing, and propose benchmarks and evaluation metrics to measure its effect on current deep learning architectures. We then proceed to take steps to mitigate the effect of distributional shift on NLP models. To this end, we develop methods based on parametric reformulations of the distributionally robust optimization framework. Empirically, we demonstrate that these approaches yield more robust models as demonstrated on a selection of realistic problems. In the third and final part of this thesis, we explore ways of efficiently adapting existing models to new domains or tasks. Our contribution to this topic takes inspiration from information geometry to derive a new gradient update rule which alleviate catastrophic forgetting issues during adaptation.
Sampling methods (e.g., node-wise, layer-wise, or subgraph) has become an indispensable strategy to speed up training large-scale Graph Neural Networks (GNNs). However, existing sampling methods are mostly based on the graph structural information and ignore the dynamicity of optimization, which leads to high variance in estimating the stochastic gradients. The high variance issue can be very pronounced in extremely large graphs, where it results in slow convergence and poor generalization. In this paper, we theoretically analyze the variance of sampling methods and show that, due to the composite structure of empirical risk, the variance of any sampling method can be decomposed into \textit{embedding approximation variance} in the forward stage and \textit{stochastic gradient variance} in the backward stage that necessities mitigating both types of variance to obtain faster convergence rate. We propose a decoupled variance reduction strategy that employs (approximate) gradient information to adaptively sample nodes with minimal variance, and explicitly reduces the variance introduced by embedding approximation. We show theoretically and empirically that the proposed method, even with smaller mini-batch sizes, enjoys a faster convergence rate and entails a better generalization compared to the existing methods.
Image segmentation is an important component of many image understanding systems. It aims to group pixels in a spatially and perceptually coherent manner. Typically, these algorithms have a collection of parameters that control the degree of over-segmentation produced. It still remains a challenge to properly select such parameters for human-like perceptual grouping. In this work, we exploit the diversity of segments produced by different choices of parameters. We scan the segmentation parameter space and generate a collection of image segmentation hypotheses (from highly over-segmented to under-segmented). These are fed into a cost minimization framework that produces the final segmentation by selecting segments that: (1) better describe the natural contours of the image, and (2) are more stable and persistent among all the segmentation hypotheses. We compare our algorithm's performance with state-of-the-art algorithms, showing that we can achieve improved results. We also show that our framework is robust to the choice of segmentation kernel that produces the initial set of hypotheses.